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3.4-4 Space I°. 1In the space I, an orthonormal sequence is (e,),
where e, = (8,;) has the nth element 1 and all others zero. (Cf. 3.1-6.)
3.4-5 Continuous functions. Let X be the inner product space of all
real-valued continuous functions on [0, 27r] with inner product defined
by
2
(x, y>=L x()y(t) dt

(cf. 3.1-5). An orthogonal sequence in X is (u,), where

u,(t) = cos nt n=0,1,---
Another orthogonal sequence in X is (v, ), where
U, () =sin nt n=1,2,---

In fact, by integration we obtain

0 fm#n
2
(5) (um,u,,)=J- cos mtcos ntdt =< ifm=n=1,2,---
0
2 fm=n=0

and similarly for (v,). Hence an orthonormal sequence is (e,), where

& (i) = u, (1) _cos nt

1
— — (n=1,2,"').
V2 [lee. | Var

eo(t) =

From (v,) we obtain the orthonormal sequence (é,), where

v, (1) sin nt

loal

é.(t)= (n=1,2,---).

Note that we even have u,, Lv, for all m and n. (Proof?) These
sequences appear in Fourier series, as we shall discuss in the next
section. Our examples are sufficient to give us a first impression of
what is going on. Further orthonormal sequences of practical impor-
tance are included in a later section (Sec. 3.7). 1
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A great advantage of orthonormal sequences over arbitrary
linearly independent sequences is the following. If we know that a
given x can be represented as a linear combination of some elements
of an orthonormal sequence, then the orthonormality makes the actual
determination of the coefficients very easy. In fact, if (e;, ez, - - -) is an
orthonormal sequence in an inner product space X and we have
x€espan{e;, - -, e}, where n is fixed, then by the definition of the

span (Sec. 2.1),

(6) X - Z Qg €x,

k=1

and if we take the inner product by a fixed ¢;, we obtain
<x: e)'> = <z €y ei> = z ak<ek, e]) = Q.

With these coefficients, (6) becomes

(7) x= kz_:l (x, ex)e.

This shows that the determination of the unknown coefficients in (6) is
simple. Another advantage of orthonormality becomes apparent if in
(6) and (7) we want to add another term «,,+1€,.+1, to take care of an

X=x+ays1epr1€5panfey, - - -, €pi1};
then we need to calculate only one more coefficient since the other

coefficients remain unchanged.
More generally, if we consider any x &€ X, not necessarily in

Y, =span{e;, - -, e.}, we can define ye Y, by setting
(8a) y= 2 (x, eex,
k=1

where n is fixed, as before, and then define z by setting

(8b) =y+2,
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that is, z = x—y. We want to show that z Ly. To really understand
what is going on, note the following. Every y€ Y, is a linear combina-
tion
y= Z A€y .
k=1

Here a;, = (y, ex), as follows from what we discussed right before. Our
claim is that for the particular choice ax =(x, e), k=1,---, n, we
shall obtain a y such that z=x—y Ly.

To prove this, we first note that, by the orthonormality,

(9) Iyl = <Z (x, ex)ex, 2 (. em)em>= 2 K, e

Using this, we can now show that z L y:
(z, )=(x=y, y)=(x )=y, y)

= (% X (5 ee)~lylP
= 2 (x, eXx, ey — 2 [(x, e
=0.

Hence the Pythagorean relation (3) gives

(10) [l = Iy 1>+l z1*.

By (9) it follows that

(11) 21 =[x = llyll? = [lx]? = X Kx, ex)P.

Since ||z||=0, we have for everyn=1,2,---
(12%) 2 (x, e =[Ix|P-
k=1

These sums have nonnegative terms, so that they form a monotone
increasing sequence. This sequence converges because it is bounded by
lx|?. This is the sequence of the partial sums of an infinite series, which
thus converges. Hence (12%) implies
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3.4-6 Theorem (Bessel inequality). Let (ex) be an orthonormal se-
quence in an inner product space X. Then for every xe X

(12) Z |(x, e =|1xIP (Bessel inequality).
k=1

The inner products (x, ¢) in (12) are called the Fourier coeffi-
cients of x with respect to the orthonormal sequence (e).

Note that if X is finite dimensional, then every orthonormal set in
X must be finite because it is linearly independent by 3.4-2. Hence in
(12) we then have a finite sum.

We have seen that orthonormal sequences are very convenient to
work with. The remaining practical problem is how to obtain an
orthonormal sequence if an arbitrary linearly independent sequence is
given. This is accomplished by a constructive procedure, the Gram-
Schmidt process for orthonormalizing a linearly independent sequence
(x;) in an inner product space. The resulting orthonormal sequence (¢;)
has the property that for every n,

span{e;, -~ - ; €.} =span{x;,- - -, Xa}-
The process is as follows.

I1st step. The first element of (ey) is
e, = 1 X
- ||x1|| =

2nd step. x, can be written
X2 = (X2, e1)e; + v3.

Then (Fig. 32)

U2 = x2— (X2, €1)€;

is not the zero vector since (x;) is linearly independent; also vzl e;
since {v,, e;) =0, so that we can take

ez = v
ol
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—nf' (xn- ‘-'k) €k
k=1

€n

| SRR

ol =1
é (%2, &) e kf, (xn. &) &

Fig. 32. Gram-Schmidt process, 2nd step Fig. 33. Gram-Schmidt process, nth step

3rd step. The vector

U3 = x3—(x3, e1)e; —(xa3, e2)ez

is not the zero vector, and vi3 1l e; as well as val eo. We take

es=r—
* el

nth step. The vector (see Fig. 33)

n—1

(13) Upn = Xn— Z (xns ek)ek
k=1

is not the zero vector and is orthogonal to e;,* -, e, ;. From it we
obtain

1
(14) ey =7 Up.
"Un"

These are the general formulas for the Gram-Schmidt process,
which was designed by E. Schmidt (1907). Cf. also J. P. Gram (1883).
Note that the sum which is subtracted on the right-hand side of (13) is
the projection of x, on span{e;,---, e,_1}. In other words, in each
step we subtract from x, its “components’ in the directions of the
previously orthogonalized vectors. This gives v,, which is then multi-
plied by 1/||v.]|, so that we get a vector of norm one. v, cannot be the
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zero vector for any n. In fact, if n were the smallest subscript for which

v, =0,

el,--.

then (13) shows that x, would be a linear combination of
, €x—1, hence a linear combination of x,, - - -, x,,—;, contradicting

the assumption that {x,, - - -, x,,} is linearly independent.

1.

Problems

Show that an inner product space of finite dimension n has a basis
{by,---.b,} of orthonormal vectors. (The infinite dimensional case
will be considered in Sec. 3.6.)

How can we interpret (12%) geometrically in R’, where r= n?
Obtain the Schwarz inequality (Sec. 3.2) from (12%).
Give an example of an x € I” such that we have strict inequality in (12).

If (e:) is an orthonormal sequence in an inner product space X, and
x € X, show that x —y with y given by

== Z Q€ o, ={x, e)
k=1
is orthogonal to the subspace Y, =span{e,, - - e,}.
(Minimum property of Fourier coefficients) Let {¢,,---,¢,} be an

orthonormal set in an inner product space X, where n is fixed. Let
x€ X be any fixed element and y=8,e;,+ - -+ B.e,.. Then |x—y|
depends on fB,,- -+, B. Show by direct calculation that ||x—y| is
minimum if and only if B, =(x, ¢;), where j=1,---, n.

Let (e.) be any orthonormal sequence in an inner product space X.
Show that for any x, ye X,

2 1 ey, el =lxl

Show that an element x of an inner product space X cannot have *“‘too
many”’ Fourier coefficients (x, e,) which are ‘“‘big”’; here, (¢.) is a given
orthonormal sequence; more precisely, show that the number n,, of
(x, e,) such that [(x, e,)|> 1/m must satisfy n,, <m? ||x|J.
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9. Orthonormalize the first three terms of the sequence (xg, Xy, X2, = * *),
where x;(t)=t', on the interval [—1, 1], where

(x, y)= J’_1 x(0)y(t) dt.

10. Let x,(t)= 1>, xo(t) =1 and x,(t) = 1. Orthonormalize x,, x,, X5, in this
order, on the interval [—1, 1] with respect to the inner product given in
Prob. 9. Compare with Prob. 9 and comment.

3.5 Series Related to Orthonormal Sequences
and Sets

There are some facts and questions that arise in connection with the
Bessel inequality. In this section we first motivate the term ‘‘Fourier
coefficients,” then consider infinite series related to orthonormal se-
quences, and finally take a first look at orthonormal sets which are
uncountable.

3.5-1 Example (Fourier series). A trigonometric series is a series of
the form

(1%) ao+ 2, (ax cos kt+ by sin kt).
k=1

A real-valued function x on R is said to be periodic if there is a
positive number p (called a period of x) such that x(t+ p)= x(¢) for all
teR.

Let x be of period 27 and continuous. By definition, the Fourier
series of x is the trigonometric series (1*) with coefficients a, and by
given by the Euler formulas

1 2%
ao=§;‘|; x(t) dt
1 2
(2) ak‘—'—J' x(t) cos kt dt k=1,2,---,
T Jo

1 2
bk=_J- x(t) sin krdt k=1,2,---
w Jo

These coefficients are called the Fourier coefficients of x.






