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If the Fourier series of x converges for each t and has the sum
x(t), then we write

(1) x(t)=ao+ 2, (ax cos kt+ by sin kt).

k=1

Since x is periodic of period 2, in (2) we may replace the interval
of integration [0, 27] by any other interval of length 2, for instance
[—m, 7).

Fourier series first arose in connection with physical problems
considered by D. Bernoulli (vibrating string, 1753) and J. Fourier (heat
conduction, 1822). These series help to represent complicated periodic
phenomena in terms of simple periodic functions (cosine and sine).
They have various physical applications in connection with differential
equations (vibrations, heat conduction, potential problems, etc.).

From (2) we see that the determination of Fourier coefficients
requires integration. To help those readers who have not seen Fourier
series before, we consider as an illustration (see Fig. 34)

t if —w2=t< =/2
x(t) =
T—1 if @2=t<37w/2
and x(t+2)= x(r). From (2) we obtain a, =0 for k=0,1,--- and,

choosing [—#/2,37/2] as a convenient interval of integration and
integrating by parts,
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Fig. 34. Graph of the periodic function x, of period 2, given by x(f)=1
if te[—m/2, w/2) and x(t)=w—1t if te[n/2, 37/2)
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Hence (1) takes the form
4 (. L ; S
t) =— — — +— — * e o
x(t) (sm t 32 sin 3t 52 sin 5¢t— + )

The reader may graph the first three partial sums and compare them
with the graph of x in Fig. 34.

Returning to general Fourier series, we may ask how these series
fit into our terminology and formalism introduced in the preceding
section. Obviously, the cosine and sine functions in (1) are those of the
sequences (u;) and (v) in 3.4-5, that is

u, (t) = cos kt, v (1) =sin kt.

Hence we may write (1) in the form
(3) x(0) = @ouo(D) + X, @ (t)+ biv (1)
-1

We multiply (3) by a fixed u; and integrate over t from O to 2. This
means that we take the inner product by u; as defined in 3.4-5. We
assume that termwise integration is permissible (uniform convergence
would suffice) and use the orthogonality of (u:) and (v.) as well as the
fact that w; L v, for all j, k. Then we obtain

(x, u;) = aoluo, ;) + 2, Lar (e, ;) + b, ;)]

= a;{u;, u;)
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cf. (5), Sec. 3.4. Similarly, if we multiply (3) by v; and proceed as
before, we arrive at

(x, v;) = b, ||vy|* = b,

where j=1,2,---. Solving for q; and b; and using the orthonormal
sequences (¢;) and (¢;), where ¢; = ||| 'w; and & =||v;|| "' v;, we obtain

1 1
a =——(x,u)=—<X,e-),
P el el

(4) : A
b, =——={x, v;) =—(x, ;).
* "7-’:'"2 4 llo;ll :

This is identical with (2). It shows that in (3),

ity (t) ="le“ (x, ex)uc (1) = (x, ex)exr(t)

and similarly for b.v. (7). Hence we may write the Fourier series (1) in
the form

(5) x ={x, eg)eo+ kzl Kx, ex)ex +{x, & )éx].

This justifies the term ‘“Fourier coefficients’ in the preceding section.
Concluding this example, we mention that the reader can find an

introduction to Fourier series in W. Rogosinski (1959); cf. also R. V.

Churchill (1963), pp. 77-112 and E. Kreyszig (1972), pp. 377-407. 1

Our example concerns infinite series and raises the question how
we can extend the consideration to other orthonormal sequences and
what we can say about the convergence of corresponding series.

Given any orthonormal sequence (e.) in a Hilbert space H, we
may consider series of the form

(6) kzl Q€

where a,, a,, - - - are any scalars. As defined in Sec. 2.3, such a series
converges and has the sum s if there exists an se€ H such that the
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sequence (s,) of the partial sums
Sn =€ +anen
converges to s, that is, ||s, —s||——> 0 as n —— .

3.5-2 Theorem (Convergence). Let (e.) be an orthonormal se-
quence in a Hilbert space H. Then:

(a) The series (6) converges (in the norm on H) if and only if the
following series converges:

) ¥ e P
k=1

(b) If (6) converges, then the coefficients a, are the Fourier
coefficients {x, ex), where x denotes the sum of (6); hence in this
case, (6) can be written

(8) x= 2 (x, ex)ex
k=1

(¢) For any x € H, the series (6) with a; =(x, e.) converges (in the
norm of H).

Proof. (a) Let

S, =aj e+ - - t+age, and o, =|a >+ - - - +|an|?
Then, because of the orthonormality, for any m and n>m,
lIsn = sml® = lltm +18m+1+ * = « + anenl?
=|am+1l®+ - - - ][> = 0n — Om.

Hence (s,) is Cauchy in H if and only if (o,) is Cauchy in R. Since H
and R are complete, the first statement of the theorem follows.

(b) Taking the inner product of s, and ¢ and using the
orthonormality, we have

(S, ¢)=a; forj=1,---k (k = n and fixed).
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By assumption, s, —> x. Since the inner product is continuous (cf.
Lemma 3.2-2),

aj=(s.,, &) —> (x,¢) (j=k).

Here we can take k (=n) as large as we please because n — o, so
that we have o; =(x, ¢;) forevery j=1,2, - - -.

(¢) From the Bessel inequality in Theorem 3.4-6 we see
that the series

k; [Kx, ex)|?

converges. From this and (a) we conclude that (¢) must hold. #

If an orthonormal family (e.), x € I, in an inner product space X
is uncountable (since the index set I is uncountable), we can still form
the Fourier coefficients {x, e¢,) of an xe€ X, where k€ I. Now we use
(12*), Sec. 3.4, to conclude that for each fixed m=1,2,-- the
number of Fourier coefficients such that [(x, e.)|> 1/m must be finite.
This proves the remarkable

3.5-3 Lemma (Fourier coefficients). Any x in an inner product space
X can have at most countably many nonzero Fourier coefficients {(x, e.)
with respect to an orthonormal family (e.), k€ I, in X.

Hence with any fixed x € H we can associate a series similar to (8),

9) | 2 (x, een
xeal
and we can arrange the e, with {(x, e.)# 0 in a sequence (e;, 3, * - *), SO

that (9) takes the form (8). Convergence follows from Theorem 3.5-2.
We show that the sum does not depend on the order in which those e,
are arranged in a sequence.

Proof. Let (w,,) be a rearrangement of (e,). By definition this
means that there is a bijective mapping n +—— m(n) of N onto itself
such that corresponding terms of the two sequences are equal, that is,
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Win(n) = €n. We set

a, ={(x, e,), Bm = (x, Wp)
and
X1= 2, Qnén, X2= 2. BmWm
n=1 m=1

Then by Theorem 3.5-2(b),
an = (X, en) =(x1, €s). Bm = (X, Win) = (X2, Wn).

Since e, = Wy(n), We thus obtain

(X1= X2, €n) = (X1, €)= (X2, Win(n))

=(x, en)—{X, Wnn))= 0
and similarly (x; — x5, w,,,) = 0. This implies
%1 = X2l = ¢x1 = x2, X ctnen = L BruWin)
=Y Gn{X1— X2, €x)— 2, Brm{X1— X2, W)= 0.

Consequently, x; — x> = 0 and x; = x,. Since the rearrangement (w,,) of
(e,) was arbitrary, this completes the proof. #

Problems

1. If (6) converges with sum x, show that (7) has the sum |x|J.

2. Derive from (1) and (2) a Fourier series representation of a function X
(function of 7) of arbitrary period p.

3. Illustrate with an example that a convergent series Y. (x, €,.)e, need not
have the sum x.

4. If (x,) is a sequence in an inmer product space X such that the series
[lx4]] #+ ||x2]| + - - - converges, show that (s,) is a Cauchy sequence, where
Sn =x1+' . ’+xn.
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8.

10.

3.6

Show that in a Hilbert space H, convergence of } |x;| implies con-
vergence of Y x;.

Let (¢;) be an orthonormal sequence in a Hilbert space H. Show that if
x = Zl a;e;, y= z Bi¢js then (x, y)= z a;B;,
i= =1 f=1

the series being absolutely convergent.

Let (e,) be an orthonormal sequence in a Hilbert space H. Show that
for every x € H, the vector

y .= Z (x’ ek)ek

k=1

exists in H and x —y is orthogonal to every e,.

Let (e,) be an orthonormal sequence in a Hilbert space H, and let
M =span-<(e,). Show that for any x € H we have x € M if and only if x
can be represented by (6) with coefficients a;, =(x, e.).

Let (e,) and (é,) be orthonormal sequences in a Hilbert space H, and
let M,=span(e,) and M,=span(é,). Using Prob. 8, show that
M, = M, if and only if

faf e Nl B =Y Gaes  eueledl

o= 1 m=1

Work out the details of the proof of Lemma 3.5-3.

Total Orthonormal Sets and Sequences

The truly interesting orthonormal sets in inner product spaces and
Hilbert spaces are those which consist of ‘‘sufficiently many” elements
so that every element in space can be represented or sufficiently
accurately approximated by the use of those orthonormal sets. In finite
dimensional (n-dimensional) spaces the situation is simple; all we need
is an orthonormal set of n elements. The question is what can be done
fo take care of infinite dimensional spaces, too. Relevant concepts are
as follows.






