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3.6-1 Definition (Total orthonormal set). A total set (or fundamental
set) in a normed space X is a subset M = X whose span is dense in X
(cf. 1.3-5). Accordingly, an orthonormal set (or sequence or family) in
an inner product space X which is total in X is called a total
orthonormal set* (or sequence or family, respectively) in X. 1

M is total in X if and only if

span M= X.

This is obvious from the definition.

A total orthonormal family in X is sometimes called an orthonor-
mal basis for X. However, it is important to note that this is not a
basis, in the sense of algebra, for X as a vector space, unless X is finite
dimensional.

In every Hilbert space H # {0} there exists a total orthonormal set.

For a finite dimensional H this is clear. For an infinite dimensional
separable H (cf. 1.3-5) it follows from the Gram-Schmidt process by
(ordinary) induction. For a nonseparable H a (nonconstructive) proof
results from Zorn’s lemma, as we shall see in Sec. 4.1 where we
introduce and explain the lemma for another purpose.

All total orthonormal sets in a given Hilbert space H# {0} have the
same cardinality. The latter is called the Hilbert dimension or or-
thogonal dimension of H. (If H ={0}, this dimension is defined to be 0.)

For a finite dimensional H the statement is clear since then the
Hilbert dimension is the dimension in the sense of algebra. For an
infinite dimensional separable H the statement will readily follow from
Theorem 3.6-4 (below) and for a general H the proof would require
somewhat more advanced tools from set theory; cf. E. Hewitt and K.
Stromberg (1969), p. 246.

* Sometimes a complete orthonormal set, but we use ‘“‘complete” only in the sense of
Def. 1.4-3; this is preferable since we then avoid the use of the same word in connection
with two entirely different concepts. [Moreover, some authors mean by “completeness”
of an orthonormal set M the property expressed by (1) in Theorem 3.6-2. We do not
adopt this terminology either.]
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The following theorem shows that a total orthonormal set cannot
be augmented to a more extensive orthonormal set by the adjunction
of new elements.

3.6-2 Theorem (Totality). Let M be a subset of an inner product space
X. Then:

(a) If M is total in X, then there does not exist a nonzero x€ X
which is orthogonal to every element of M; briefly,

(1) x1M = x=0.

(b) If X is complete, that condition is also sufficient for the totality
of M in X.

Proof. (a) Let H be the completion of X; cf. 3.2-3. Then X,
regarded as a subspace of H, is dense in H. By assumption, M is total
in X, so that span M is dense in X, hence dense in H. Lemma 3.3-7
now implies that the orthogonal complement of M in H is {0}. A
fortiori, if x€ X and x L M, then x=0.

(b) If X is a Hilbert space and M satisfies that condition,
so that M*={0}, then Lemma 3.3-7 implies that M is total in X. §

The completeness of X in (b) is essential. If X is not complete,
there may not exist an orthonormal set M < X such that M is total in
X. An example was given by J. Dixmier (1953). Cf. also N. Bourbaki
(1955), p. 155.

Another important criterion for totality can be obtained from the
Bessel inequality (cf. 3.4-6). For this purpose we consider any given
orthonormal set M in a Hilbert space H. From LLemma 3.5-3 we know
that each fixed x€ H has at most countably many nonzero Fourier
coefficients, so that we can arrange these coefficients in a sequence,
say, {(x, e;), (x, e2), - - - . The Bessel inequality is (cf. 3.4-6)

) Y Kx, e =1x|? (Bessel inequality)
k

where the left-hand side is an infinite series or a finite sum. With the
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equality sign this becomes

@3) Y Kx, e = [1x|P (Parseval relation)
k

and yields another criterion for totality:

3.6-3 Theorem (Totality). An orthonormal set M in a Hilbert space H
is total in H if and only if for all x € H the Parseval relation (3) holds
(summation over all nonzero Fourier coefficients of x with respect to M).

Proof. (a) If M is not total, by Theorem 3.6-2 there is a nonzero
x L M in H. Since x L M, in (3) we have (x, ex)=0 for all k, so that
the left-hand side in (3) is zero, whereas ||x||* # 0. This shows that (3)
does not hold. Hence if (3) holds for all x € H, then M must be total
in H.

(b) Conversely, assume M to be total in H. Consider any
x€ H and its nonzero Fourier coefficients (cf. 3.5-3) arranged in a
sequence (x, e,), {x, e,), - - -, or written in some definite order if there
are only finitely many of them. We now define y by

4) y= ; (x, ex)ex,

noting that in the case of an infinite series, convergence follows from
Theorem 3.5-2. Let us show that x—y 1 M. For every e¢; occurring
in (4) we have, using the orthonormality,

(x—y, ¢)=(x, ¢)— ;, (x, ex){ex, €;)=(x, ¢;)—(x, ¢;)=0.
And for every v € M not contained in (4) we have (x, v)=0, so that
(x—y, v)=(x, v)— Z (x, ex){ew, 1)=0—0=0.

Hence x—y 1 M, that is, x—y € M"*. Since M is total in H, we have
M*={0} from 3.3-7. Together, x —y =0, that is, x = y. Using (4) and
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again the orthonormality, we thus obtain (3) from
llx]* = <Z (x, exYex, ), (x, em)em> =) {x, ex)x, e
k m k

This completes the proof. |1

Let us turn to Hilbert spaces which are separable. By Def. 1.3-5
such a space has a countable subset which is dense in the space.
Separable Hilbert spaces are simpler than nonseparable ones since
they cannot contain uncountable orthonormal sets:

3.6-4 Theorem (Separable Hilbert spaces). Let H be a Hilbert space.
Then:

(a) If H is separable, every orthonormal set in H is countable.

(b) If H contains an orthonormal sequence which is total in H, then
H is separable.

Proof. (a) Let H be separable, B any dense set in H and M any
orthonormal set. Then any two distinct elements x and y of M have
distance V2 since

Ix = yIP=(x—y, x —y)=(x, x)+(y, y)=2.

Hence spherical neighborhoods N, of x and N, of y of radius V2/3 are
disjoint. Since B is dense in H, there is a be B in N, anda be B in N,
and b# b since N, N N, = &. Hence if M were uncountable, we would
have uncountably many such pairwise disjoint spherical neighborhoods
(for each x € M one of them), so that B would be uncountable. Since B
was any dense set, this means that H would not contain a dense set
which is countable, contradicting separability. From this we conclude
that M must be countable.

(b) Let (ex) be a total orthonormal sequence in H and A
the set of all linear combinations

yivei+ - +ynen n=1,2,---

where vy = a{™ + ib{™ and ay” and by" are rational (and b =0 if H
is real). Clearly, A is countable. We prove that A is dense in H by



172 Inner Product Spaces. Hilbert Spaces

showing that for every xe H and &£>0 there is a ve A such that
lIx — vl <e.

Since the sequence (e) is total in H, there is an n such that
Y, =span {e;, - - -, e,} contains a point whose distance from x is less
than &/2. In particular, ||x — y|| < &/2 for the orthogonal projection y of
x on Y,, which is given by [cf. (8), Sec. 3.4]

y= i (x, ex)ex.

k=1

Hence we have

. i (x, ex)ex

E
<=
k=1 2

Since the rationals are dense on R, for each (x, e.) there is a yi"
(with rational real and imaginary parts) such that

£
— =i

i [(x, ex)— i lex 5

k=1

Hence ve A defined by

n
v= Z ‘YScn)ek

k=1

satisfies
llx—oll=llx— 2 ¥ exll

=[x — 2 (x, exde]|+ |12 (x, exyex — 2. vi el

<=t ==,

N
NI,

This proves that A is dense in H, and since A is countable, H is
separable. |

For using Hilbert spaces in applications one must know what total
orthonormal set or sets to choose in a specific situation and how to
investigate properties of the elements of such sets. For certain function
spaces this problem will be considered in the next section, which
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includes special functions of practical interest that arise in this context
and have been investigated in very great detail. To conclude this
section, let us point out that our present discussion has some further
consequences which are of basic importance and can be formulated in
terms of isomorphisms of Hilbert spaces. For this purpose we first
remember from Sec. 3.2 the following.

An lsomorplnsm of a Hilbert space H onto a Hilbert space H over
the same field is a bijective linear operator T: H— H such that for
all x, ye H,

(5) (Tx, Ty)=(x, y)-

H and H are then called isomorphic Hilbert spaces. Since T is linear, it
preserves the vector space structure, and (5) shows that T is iSometric.
From this and the bijectivity of T it follows that H and H are
algebraically as well as metrically indistinguishable; they are essentially
the same, except for the nature of their elements, so that we may think
of H as being essentially H with a “tag™ T attached to each vector x.
Or we may regard H and H as two copies (models) of the same
abstract space, just as we often do in the case of n-dimensional
Euclidean space.

Most exciting in this discussion is the fact that for each Hilbert
dimension (cf. at the beginning of this section) there is just one abstract
real Hilbert space and just one abstract complex Hilbert space. In other
words, two abstract Hilbert spaces over the same field are distinguished
only by their Hilbert dimension, a situation which generalizes that in the
case of Euclidean spaces. This is the meaning of the following theorem.

3.6-5 Theorem (Isomorphism and Hilbert dimension). Two Hilbert
spaces H and H, both real or both complex, are isomorphic if and only if
they have the same Hilbert dimension.

Proof. (a) If H is isomorphic with H and T: H—> H is an
isomorphism, then (5) shows that orthonormal elements in H have
orthonormal images under T. Since T is bijective, we thus conclude
that T maps every total orthonormal set in H onto a total orthonormal
set in H. Hence H and H have the same Hilbert dimension.

(b) Conversely, suppose that H and H have the same
Hilbert dimension. The case H={0} and H ={0} is trivial. Let H# {0}.
Then H# {0}, and any total orthonormal sets M in H and M in H have
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the same cardinality, so that we can index them by the same index set
{k} and write M = (e;) and M = (&,).

To show that H and H are isomorphic, we construct an isomor-
phism of H onto H. For every x € H we have

(6) x= Z (x, eg)ek

where the right-hand side is a finite sum or an infinite series (cf. 3.5-3),
and ¥ [(x, ex)|* <o by the Bessel inequality. Defining
k

(7) %=Tx= ) (x, e)é
k

we thus have convergence by 3.5-2, so that £ € H. The operator T is
linear since the inner product is linear with respect to the first factor.
T is isometric, because by first using (7) and then (6) we obtain

€] = | Tx|* = ; |(x, e = lIx|*.

From this and (9), (10) in Sec. 3.1 we see that T preserves the inner
product. Furthermore, isometry implies injectivity. In fact, if Tx =Ty,
then

lx =yl =T (x—=y=[Tx— Tyl =0,

so that x =y and T is injective by 2.6-10.
We finally show that T is surjective. Given any

X = Z akék
K
in H, we have ¥ |ax|> <= by the Bessel inequality. Hence

Z A
k

is a finite sum or a series which converges to an x€ H by 3.5-2, and
al =~(x, ex) by the same theorem. We thus have X = Tx by (7). Since
X € H was arbitrary, this shows that T is surjective. 1§



3.7 Legendre, Hermite and Laguerre Polynomials 175

10.

3.7

Problems

If F is an orthonormal basis in an inner product space X, can we
represent every x € X as a linear combination of elements of F? (By
definition, a linear combination consists of finitely many terms.)

Show that if the orthogonal dimension of a Hilbert space H is finite, it
equals the dimension of H regarded as a vector space; conversely, if
the latter is finite, show that so is the former.

From what theorem of elementary geometry does (3) follow in the case
of Euclidean n-space?

Derive from (3) the following formula (which is often called the
Parseval relation).

(x’ Y) = Z <x’ ek)(y, ek)'

k

Show that an orthonormal family (e,), k€ I, in a Hilbert space H is
total if and only if the relation in Prob. 4 holds for every x and y in H.

Let H be a separable Hilbert space and M a countable dense subset of
H. Show that H contains a total orthonormal sequence which can be
obtained from M by the Gram-Schmidt process.

Show that if a Hilbert space H is separable, the existence of a total
orthonormal set in H can be proved without the use of Zorn’s lemma.

Show that for any orthonormal sequence F in a separable Hilbert space
H there is a total orthonormal sequence F which contains F.

[.et M be a total set in an inner product space X. If (v, x)=(w, x) for
all xe M, show that v = w.

Let M be a subset of a Hilbert space H, and let v, w € H. Suppose that
(v, x) =(w, x) for all x€ M implies v = w. If this holds for all v, w € H,
show that M is total in H.

Legendre, Hermite and Laguerre Polynomials

The theory of Hilbert spaces has applications to various solid topics in
analysis. In the present section we discuss some total orthogonal and
orthonormal sequences which are used quite frequently in connection



