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function in (8) by v, for simplicity, and integrate m times by parts.
Then, by (7b),

-1n" I ) e " H,()H,(1) dt = J'N H,.()v'"™ dt

=H,.()v" " —J 2mH,, (t)v'" " dt

+o0

=-2m H, _,()v"" " adt

—0

-+ oo

=(—1)"2"m! Ho()v™" ™ du.

—

Here Hy(t)=1. If m < n, integrating once more, we obtain 0 since v
and its derivatives approach zero as t—— +o or t—— —. This
proves orthogonality of (e.). We prove (8) for m = n, which entails
le.l=1 by (7a). If m = n, for the last integral, call it J, we obtain

1= e a=van

-0

This is a familiar result. To verify it, consider J*, use polar coordinates
r, 0 and dsdt=rdrd@, finding

e[ emas[Tera [T
2
L rdrdé

2 -

e T ds dt

o

This proves (8), hence the orthonormality of (e,). #§

Classically speaking, one often expresses (8) by saying that the
H,’s form an orthogonal sequence with respect to the weight function
w?, where w is the function defined at the beginning.



184 Inner Product Spaces. Hilbert Spaces

It can be shown that (e,) defined by (7a), (7b) is total in the real
space L*(—<=, +=). Hence this space is separable. (Cf. 3.6-4.)

We finally mention that the Hermite polynomials H, satisfy the
Hermite differential equation

(9) H,"—2tH,"+2nH, = 0.

Warning. Unfortunately, the terminology in the literature is not
unique. In fact, the functions He, defined by

Heo(t) =1, He,,(:)=(—1)"e"’2%(e“"’z) n=1,2,---

are also called ““Hermite polynomials’ and, to make things worse, are
sometimes denoted by H,.

An application of Hermite polynomials in quantum mechanics will
be considered in Sec. 11.3.

3.7-3 Laguerre polynomials. A total orthonormal sequence in
L*(—o, b] or L?*la, +*) can be obtained from such a sequence in
L?*[0, +) by the transformations t=b—s and t = s+ a, respectively.

We consider L?[0, +«). Applying the Gram-Schmidt process to
the sequence defined by

—t/2 —t/2 2 —y2
R o e e~V

we obtain an orthonormal sequence (e,). It can be shown that (e,) is
total in L?*[0, +) and is given by (Fig. 37)

(10a) en(t) = e 2L, (¢) n=0,1,---

where the Laguerre polynomial of order n is defined by

t n

(10b) Lo(t)=1, Ln(‘)=§':;ltn

(t"e™) n=1,2.+9,

that is,

(100) Lall) =§(_-]'1_y () >
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Fig. 37. Functions e, in (10a) involving Laguerre polynomials

Explicit expressions for the first few Laguerre polynomials are

Lo(t)=1 Li(t)=1—1t
(10%) Ly(t)=1—2t+3t> La()=1-3¢t+32—3%7°

La(t)=1—4t+31> =% +351".

The Laguerre polynomials L, are solutions of the Laguerre
differential equation

(11) tL,"+(1—tL,'+nL,.=0.

For further details, see A. Erdélyi et al. (1953-55); cf. also R.
Courant and D. Hilbert (1953-62), vol. 1.

Problems
1. Show that the Legendre differential equation can be written
[(1—¢*)P,’Y =—n(n+1)P,.

Multiply this by P,. Multiply the corresponding equation for P, by
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—P, and add the two equations. Integrating the resulting equation
from —1 to 1, show that (P,) is an orthogonal sequence in the space
L?*{—1,1].

Derive (2¢) from (2b).
(Generating function) Show that

l -
= P, ()w".
vV1—2tw+ Wz ngo

The function on the left is called a generating function of the Legendre
polynomials. Generating functions are useful in connection with vari-
ous special functions; cf. R. Courant and D. Hilbert (1953-62), A.
Erdélyi et al. (1953-55).

Show that

%= - =.l i P, (cos 0) (2)"

VP4 ri—2rr,cos0 1,0 r,

where r is the distance between given points A; and A, in R’ as
shown in Fig. 38, and r,>0. (This formula is useful in potential
theory.)

A,

Fig. 38. Problem 4

A
2 1

Obtain the Legendre polynomials by the power series method as
follows. Substitute x(t1)=c,+c,f+c,t°+ - -+ into Legendre’s equation
and show that by determining the coefficients one obtains the solution
X = CoX;t+ C;X,, Where '

nn+1) ‘2+(n =2)n(n+1)(n+3) -
2! 4!

x,(t)=1— + e
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10.

ll.

and

= '_(n—l:);('n+2) 13+(n—3)(n—1;(!n +2)(n+4) S+

Show that for n € N, one of these two functions reduces to a polynomial,
which agrees with P, if one chooses ¢, =(2n)!/2"(n!)? as the coefficient
of t".

(Generating function) Show that

oa

exp 2wt —w?) = Z -'% H, (t)w".

n=Q0 x

The function on the left is called a generating function of the Hermite
polynomials.

Using (7b), show that

H, (1) =2tH,(t)— H,'(1).

Differentiating the generating function in Prob. 6 with respect to ¢,
show that

H, '"(t)=2nH,_,(1) (n=1)

and, using Prob. 7, show that H, satisfies the Hermite differential
equation.

Solve the differential equation y”+(2n+1—1t*)y =0 in terms of Her-
mite polynomials.

Using Prob. 8, show that
(e "H,") =—2ne "H,.

Using this and the method explained in Prob. 1, show that the
functions defined by (7a) are orthogonal on R.

(Generating function) Using (10c), show that

1 tw < 5
U, w)—l_wexp[— ]= Z L.(t)w".

1—w n=0
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12. Differentiating ¢ in Prob. 11 with respect to w, show that
(a) (n+1)L,..,()—2n+1—0L,.(t)+nL,_,(t)=0.
Differentiating ¢ with respect to t, show that
(b) L, :(6) = Li_.()— L3(2).

13. Using Prob. 12, show that
(c) tL!(t)= nL,(t)—nL,_,(1).

Using this and (b) in Prob. 12, show that L, satisfies Laguerre’s
differential equation (11).

14. Show that the functions in (10a) have norm 1.

15. Show that the functions in (10a) constitute an orthogonal sequence in
the space L*[0, +).

3.8 Representation of Functionals on Hilbert Spaces

It is of practical importance to know the general form of bounded
linear functionals on various spaces. This was pointed out and ex-
plained in Sec. 2.10. For general Banach spaces such formulas and their
derivation can sometimes be complicated. However, for a Hilbert
space the situation is surprisingly simple:

3.8-1 Riesz’s Theorem (Functionals on Hilbert spaces). Every
bounded linear functional f on a Hilbert space H can be represented in
terms of the inner product, namely,

83 f(x)=(x, z)

where z depends on f, is uniquely determined by f and has norm

2) lzll = lIfIl-
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Proof. We prove that
(a) f has a representation (1),
(b) z in (1) is unique,
(¢) formula (2) holds.
The details are as follows.

(a) If f=0, then (1) and (2) hold if we take z=0. Let
f# 0. To motivate the idea of the proof, let us ask what properties z
must have if a representation (1) exists. First of all, z# 0 since
otherwise f= 0. Second, (x, z)=0 for all x for which f(x)=0, that is,
for all x in the null space N(f) of f. Hence z L N(f). This suggests that
we consider N'(f) and its orthogonal complement N'(f)".
N(f) is a vector space by 2.6-9 and is closed by 2.7-10. Further-
more, f# 0 implies N(f)# H, so that N(f)*#{0} by the projection
theorem 3.3-4. Hence N(f)* contains a zo7# 0. We set

v =f(x)zo— f(z0)x
where x € H is arbitrary. Applying f, we obtain
f(v) = f(x)f(z0) — f(z0)f(x) = 0.
This show that v € N(f). Since zo L N(f), we have

0=(v, zo) =(f(x)zo— f(20)x, zo)
= f(x){z0, zo) — f(Zz0){x, Zo)-

Noting that {zo, zo) = ||zo||” # 0, we can solve for f(x). The result is

f(zo)

(207 Zo)

f(x)=

<xa 20>-

This can be written in the form (1), where

f(zo)

= e
(zo, Zo)

Since x € H was arbitrary, (1) is proved.
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(b) We prove that z in (1) is unique. Suppose that for all

f(x)=(x, z:)={x, z2).

Then (x, z,— z,) =0 for all x. Choosing the particular x = z, — 2z, we
have

(x, 21— 2z2)=(21— 22, 21—22>="7-1 "'22"2=0'

Hence z,— z, =0, so that z, = z,, the uniqueness.

(¢) We finally prove (2). If f= 0, then z =0 and (2) holds.
Let f# 0. Then z# 0. From (1) with x = z and (3) in Sec. 2.8 we obtain

IzI* =<z, 2) = f(z) = Ifll lIz]l-

Division by ||z||# 0 yields ||z||=||f|. It remains to show that |f||=|lz|
From (1) and the Schwarz inequality (Sec. 3.2) we see that

[fC)l = Kx, z) = Ix]ll|z]I-

This implies

IFll= sup, Kx, 2)|=]1z]l 8

The idea of the uniqueness proof in part (b) is worth noting for
later use:

3.8-2 Lemma (Equality). If (v,, w)=(v;, w) for all w in an inner
product space X, then v, = v,. In particular, (v,, w)=0 for all we X
implies v, = 0.

Proof. By assumption, for all w,
(v1— 02, w)=(v1, w)—(v2, w)= 0.
For w=uv,—v, this gives |[v;—v,*=0. Hence v,—v>,=0, so that

v, = v,. In particular, (v,, w)=0 with w=uv, gives ||v,|* =0, so that
U, 0. [ |



