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The practical usefulness of bounded linear functionals on Hilbert
spaces results to a large extent from the simplicity of the Riesz
representation (1).

Furthermore, (1) is quite important in the theory of operators on
Hilbert spaces. In particular, this refers to the Hilbert-adjoint operator
T* of a bounded linear operator T which we shall define in.the next
section. For this purpose we need a preparation which is of general
interest, too. We begin with the following definition.

3.8-3 Definition (Sesquilinear form). Let X and Y be vector spaces
over the same field K (=R or C). Then a sesquilinear form (or
sesquilinear functional) h on X X Y is a mapping

h: XXY—K

such that for all x, x;, xo€ X and y, y,, y2€ Y and all scalars «, B,

(a) h(x;+x2, y)= h(x, y)+ h(x2, y)
& (b) h(x, y1+y2) = h(x, y1)+ h(x, y2)

(c) h(ax, y) = ah(x, y)

(d) h(x, By) = Bh(x, y).

Hence h is linear in the first argument and conjugate linear in the
second one. If X and Y are real (K =R), then (3d) is simply

h(x, By) = Bh(x, y)

and h is called bilinear since it is linear in both arguments.
If X and Y are normed spaces and if there is a real number ¢ such
that for all x, y

(4) [h(x, Y| =c x| Iyl
then h is said to be bounded, and the number

|h(x, )| _

x hll= su sup [h(x, y)l
(5) it xexP{O} Iyl ||x||=‘l
yeY—{0} fyll=1

is called the norm of h. 1
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For example, the inner product is sesquilinear and bounded.
Note that from (4) and (5) we have

(6) | (x, =R %Iyl

The term “‘sesquilinear’ was motivated in Sec. 3.1. In Def. 3.8-3,
both words ““form” and ‘““functional’” are common, the usage of one or
the other being largely a matter of individual taste. Perhaps it is
slightly preferable to use ‘“form” in this two-variable case and reserve
the word ““functional” to one-variable cases such as that in Theorem
3.8-1. This is what we shall do.

It is quite interesting that from Theorem 3.8-1 we can obtain a

general representation of sesquilinear forms on Hilbert spaces as
follows.

3.8-4 Theorem (Riesz representation). Let H,, H, be Hilbert spaces
and ‘/, Ll X‘.\
h: HHXH,— K
a bounded sesquilinear form. Then h has a representation
/" ./, ,/// A -
(7) ,u‘/h (x’ /Y) = (DX, )‘)
£ L ;'_/‘ *'//“3 . ‘7/

where S: Hi——> H, is a bounded linear operator. S is uniquely deter-
mined by h and has norm

(8) ISl = lkl-
Proof. We consider h(x, y). This is linear in y, because of the bar.

To make Theorem 3.8-1 applicable, we keep x fixed. Then that
theorem yields a representation in which y is variable, say,

h(x, y)=(y, z).

Hence

(9) h(x, y)=(z, y)-

Here z € H, is unique but, of course, depends on our fixed x € H,. It
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follows that (9) with variable x defines an operator
S: HH— H; given by z = Sx.
Substituting z = Sx in (9), we have (7).

S is linear. In fact, its domain is the vector space H,, and from (7)
and the sesquilinearity we obtain

(S(ax; + Bx2), y) = h(ax;+ Bx2, y)
= ah(x,, y)+ Bh(x2, y)
= a(Sx1, y)+ B(Sx2, y)
= (aSx, + BSx2, y)
for all y in H», so that by Lemma 3.8-2,

S(ax, + sz) = aSx,+ ﬂSX2.

S is bounded. Indeed, leaving aside the trivial case S = 0, we have
from (5) and (7)

e ISx W [(Sx, Sx) - [ISx]l _
I1=248 Wl = SR efllisxl SR g IS

This proves boundedness. Moreover, ||h|=|S].
We now obtain (8) by noting that ||h||=||S| follows by an applica-
tion of the Schwarz inequality:

) W Iselivll_
k= s»«'«? uxu Tyl = 228 g g~ IS1

S is unique. In fact, assuming that there is a linear operator
T: H,—— H, such that for all x€ H, and ye€ H, we have

h(x, y) =(Sx, y)=(TXx, y),

we see that Sx = Tx by Lemma 3.8-2 for all xe H,. Hence S=T by
definition. 1
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Problems

(Space R®) Show that any linear functional f on R can be represented
by a dot product:

f(x)=x-z=&5+ 64+ 64

(Space I”) Show that every bounded linear functional f on [? can be
represented in the form

f)=Y & [z2=(g) e I*).
=1

If z is any fixed element of an inner product space X, show that
f(x) =(x, z) defines a bounded linear functional f on X, of norm ||z].

Consider Prob. 3. If the mapping X —— X’ given by z+——f is
surjective, show that X must be a Hilbert space.

Show that the dual space of the real space [” is [”. (Use 3.8-1.)

Show that Theorem 3.8-1 defines an isometric bijection T: H —— H/',
z+— f,=(-, z) which is not linear but conjugate linear, that is,
az +BU — &fz +va

Show that the dual space H’ of a Hilbert space H is a Hilbert space
with inner product (-, -), defined by

(fz) fu)l -<Z, U)= (U, Z),

where f,(x)={(x, z), etc.

Show that any Hilbert space H is isomorphic (cf. Sec. 3.6) with its
second dual space H” = (H')". (This property is called reflexivity of H.
It will be considered in more detail for normed spaces in Sec. 4.6.)

(Annihilator) Explain the relation between M“ in Prob. 13, Sec. 2.10,
and M" in Sec. 3.3 in the case of a subset M# J of a Hilbert space H.

Show that the inner product (-, ) on an inner product space X is a
bounded sesquilinear form h. What is ||k| in this case?
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12.

13.

14.

15.

3.9

If X is a vector space and h a sesquilinear form on X X X, show that
[1(x) = h(x, yo) with fixed y, defines a linear functional f;, on X, and so
does f.(y) = h(x,, y) with fixed x,.

Let X and Y be normed spaces. Show that a bounded sesquilinear
form h on X X Y is jointly continuous in both variables.

(Hermitian form) Let X be a vector space over a field K. A Hermitian
sesquilinear form or, simply, Hermitian form h on X X X is a mapping
h: XXX —— K such that for all x,y,z€ X and a € K,

h(x+y, z)=h(x, z)+h(y, 2)

h(ax, y) = ah(x, y)

h(x, y) = h(y, x).

What is the last condition if K =R? What condition must be added for
h to be an inner product on X?

(Schwarz inequality) et X be a vector space and h a Hermitian form
on X X X. This form is said to be positive semidefinite if h(x, x) =0 for
all x € X. Show that then h satisfies the Schwarz inequality

|h(x, y)F = h(x, x)h(y, y).
(Seminorm) If h satisfies the conditions in Prob. 14, show that

p(x)=+vVh(x, x) (=0)

defines a seminorm on X. (Cf. Prob. 12, Sec. 2.3.)

Hilbert-Adjoint Operator

The results of the previous section will now enable us to introduce the
Hilbert-adjoint operator of a bounded linear operator on a Hilbert
space. This operator was suggested by problems in matrices and linear
differential and integral equations. We shall see that it also helps to
define three important classes of operators (called self-adjoint, unitary
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and normal operators) which have been studied extensively because
they play a key role in various applications.

3.9-1 Definition (Hilbert-adjoint operator T*). LLet T: H, —— H, be
a bounded linear operator, where H; and H, are Hilbert spaces. Then
the Hilbert-adjoint operator T* of T is the operator

’Iv*: Hz_—> H1
such that® for all xe H,; and y € H>,
) (T 3 ) =(x;, Ty). n

Of course, we should first show that this definition makes sense,
that is, we should prove that for a given T such a T* does exist:

3.9-2 Theorem (Existence). The Hilbert-adjoint operator T* of T in
Def. 3.9-1 exists, is unique and is a bounded linear operator with norm

2) Il =Tl

Proof. The formula

(3) h(y, x) =(y, Tx)

defines a sesquilinear form on H, X H,; because the inner product is
sesquilinear and T is linear. In fact, conjugate linearity of the form is
seen from

h(y, ax;+ Bxz) =(y, T(ax,+ Bxz))
=(y, aTx; + BTx>)
= a(y, Tx1)+ B(y, Tx>)
= &h(y, x1)+ Bh(y, x2).
h is bounded. Indeed, by the Schwarz inequality,
|k (y, x)| =Ky, Tx)| =y I Tx[|= |71 x|l Iy]-

® We may denote inner products on H, and H, by the same symbol since the factors
show to which space an inner product refers. '
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This also implies ||h||=||T]|. Moreover we have |h|=|T] from

Ky, Tx)| KT, Tx)|
hll=sup———=sup ———=||T|l.
Il =sup 2 Sl = S8 g 1
yaéO Tx+0
Together,
@) =Tl

Theorem 3.8-4 gives a Riesz representation for h; writing T* for S,
we have

(5) h(y, x) =(T™y, x),

and we know from that theorem that T*: H, —— H, is a uniquely
determined bounded linear operator with norm [cf. (4)]

1Tl = IRl = ITI-

This proves (2). Also (y, Tx)=(T*y, x) by comparing (3) and (5), so
that we have (1) by taking conjugates, and we now see that T™ is in
fact the operator we are looking for.

In our study of properties of Hilbert-adjoint operators it will be
convenient to make use of the following lemma.

3.9-3 Lemma (Zero operator). Let X and Y be inner product spaces
and Q: X —— Y a bounded linear operator. Then:

(@) O=0 if and only if (Qx, y)=0 for all xe X and ye Y.

(b) If Q: X—— X, where X is complex, and {(Qx, x)=0 for all
x € X, then Q=0.

Proof. (a) Q =0 means Qx =0 for all x and implies
(Ox, y)=(0, y)=0(w, y)=0.

Conversely, (Ox, y)=0 for all x and y implies Qx =0 for all x by
3.8-2, so that Q = 0 by definition.

(b) By assumption, (Quv, v)=0 for every v=ax+ye X,



