198 Inner Product Spaces. Hilbert Spaces

that is,

0=(Q(ax+y), ax+y)
= |a|? (Qx, x)+(Qy, y)+ a{Qx, y)+ &(Qy, x).

The first two terms on the right are zero by assumption. a = 1 gives
(Qx, y)+(Qy, x)=0.

a=i gives & = —i and
(Qx, y)—(Qy, x)=0.

By addition, (Qx, y)=0, and Q =0 follows from (a). 1

In part (b) of this lemma, it is essential that X be complex.
Indeed, the conclusion may not hold if X is real. A counterexample is
a rotation Q of the plane R? through a right angle. Q is linear, and
Qx L x, hence (Qx, x)=0 for all x eR?, but Q# 0. (What about such a
rotation in the complex plane?)

We can now list and prove some general properties of Hilbert-
adjoint operators which one uses quite frequently in applying these
operators.

3.9-4 Theorem (Properties of Hilbert-adjoint operators). Let H,, H,
be Hilbert spaces, S: Hi—— H, and T: H,——> H, bounded linear
operators and «a any scalar. Then we have

(a) (T*y, x)=(y, Tx) (xe Hy, y € H»)
(b) (S+T)*=8S*+T*
(c) (aT)*=aT*
(6) (d) (=T
(e) IT*T|| = |TT*|| =TI
(f) T™T=0 — T=0

(g) (ST)*= T*S* (assuming H, = H,).
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Proof. (a) From (1) we have (6a):

(T*y, x)=(x, T*y)=(Tx, y)=(y, Tx).
(b) By (1), for all x and Yy,

(x, S+ D)*y)=((S+T)x, y)
=(Sx, y)+(Tx, y)
=(x, S*¥y)+(x, T*y)

={x, (S*+ T*)y).

Hence (S+ T)*y=(S*+T*)y for all y by 3.8-2, which is (6b) by
definition.

(¢) Formula (6¢) must not be confused with the formula
T*(ax)=aT*x. It is obtained from the following calculation and
subsequent application of LLemma 3.9-3(a) to Q= (aT)*—aT™.

{(aT)*y, x)=(y, (aT)x)
=(y, a(Tx))
= a(y, Tx)
=a(T*y, x)
=(aT*y, x).

(d) (T*)* is written T** and equals T since for all x € H,
and y € H, we have from (6a) and (1)

((T*)*x, y)=(x, T*y)=(Tx, y)

and (6d) follows from Lemma 3.9-3(a) with Q=(T*)*-T.

(e) We see that T*T: H,—— H,, but TT*: H, — H,.
By the Schwarz inequality,

I Tx|* ={Tx, Tx) =(T*Tx, x) =||T* Tx|| ||| = | T* T [|x|*.
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Taking the supremum over all x of norm 1, we obtain | T|*=|T*T|.
Applying (7), Sec. 2.7, and (2), we thus have

ITIP=IT*TI=IT*| T/ =TI

Hence |T*TJ||=|T|>. Replacing T by T* and using again (2), we also
have

|T** T*|| = | T*|” = || T|.
Here T** =T by (6d), so that (6e) is proved.

(f) From (6e) we immediately obtain (6f).

(g) Repeated application of (1) gives
(x, (ST)*y)={(ST)x, y)=(Tx, S*y)=(x, T*S*y).

Hence (ST)*y = T*S*y by 3.8-2, which is (6g) by definition. #§

Problems

1. Show that 0*=0, I*= L

2. Let H be a Hilbert space and T: H —— H a bijective bounded linear
operator whose inverse is bounded. Show that (T*) ' exists and

(T =@

3. If (T,,) is a sequence of bounded linear operators on a Hilbert space
and T,, —— T, show that T, * — T™.

4. Let H, and H, be Hilbert spaces and T: H,—— KW, a bounded linear
operator. If M, < H, and M, < H, are such that T(M,) < M,, show that
M,* o T*(M,").

5. Let M, and M, in Prob. 4 be closed subspaces. Show that then
T(M,)= M, if and only if M,* > T*(M,").

6. If M, =N(T)={x |Tx =0} in Prob. 4, show that

(a) T*(Hx)=M,*, (b) [T(Hx)]*CN(T:’), (c) M, =[T*(H.)I.



3.10 Self-Adjoint, Unitary and Normal Operators 201

7. Let T, and T, be bounded linear operators on a complex Hilbert space
H into itself. If (Tx, x)=(T,x, x) for all xe€ H, show that T, = T,.

8. Let S=1+T*T: H—— H, where T is linear and bounded. Show that
S ': S(H)—— H exists.

9. Show that a bounded linear operator T: H —— H on a Hilbert space

H has a finite dimensional range if and only if T can be represented in
the form

Tx= Y. {(x, v;)w [v, w;e H].
j=1
10. (Right shift operator) Let (¢,) be a total orthonormal sequence in a
separable Hilbert space H and define the right shift operator to be the
linear operator T: H—— H such that Te,=e¢,,, for n=1,2,---.
Explain the name. Find the range, null space, norm and Hilbert-
adjoint operator of T.

3.10 Self-Adjoint, Unitary and Normal Operators

Classes of bounded linear operators of great practical importance can
be defined by the use of the Hilbert-adjoint operator as follows.

3.10-1 Definition (Self-adjoint, unitary and normal operators). A

bounded linear operator T: H——> H on a Hilbert space H is said to
be

self-adjoint or Hermitian if Th=T,
unitary if T is bijective and =7,
normal if TTY=T*T. )

The Hilbert-adjoint operator T* of T is defined by (1), Sec. 3.9,
that is,

(Tx, y)=(x, T*y).
If T is self-adjoint, we see that the formula becomes
(1) (Tx, y)=(x, Ty).

If T is self-adjoint or unitary, T is normal.
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This can immediately be seen from the definition. Of course, a
normal operator need not be self-adjoint or unitary. For example, if
I: H—— H is the identity operator, then T =2iI is normal since
T*=—2iI (cf. 3.9-4), so that TT*=T*T =41 but T*# T as well as
™ # T ' =—3il.

Operators which are not normal will easily result from the next
example. Another operator which is not normal is T in Prob. 10, Sec.
3.9, as the reader may prove.

The terms in Def. 3.10-1 are also used in connection with ma-
trices. We want to explain the reason for this and mention some
important relations, as follows.

3.10-2 Example (Matrices). We consider C" with the inner product
defined by (cf. 3.1-4)

(2) (x, y)=x"y,

where x and y are written as column vectors, and T means transposi-
tion; thus x" = (&, - - -, &,), and we use the ordinary matrix multiplica-
tion.

Let T: C" —— C" be a linear operator (which is bounded by
Theorem 2.7-8). A basis for C" being given, we can represent T and
its Hilbert-adjoint operator T™ by two n-rowed square matrices, say,
A and B, respectively.

Using (2) and the familiar rule (Bx)" = x"BT for the transposition
of a product, we obtain

(Tx, y)=(Ax)'y=x"ATy
and

(x, T*y) = x"Bjy.

By (1), Sec. 3.9, the left-hand sides are equal for all x, yeC". Hence
we must have AT = B. Consequently,

B=A".
Our result is as follows.

If a basis for C" is given and a linear operator on C" is represented
by a certain matrix, then its Hilbert-adjoint operator is represented by the
complex conjugate transpose of that matrix.
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Consequently, representing matrices are

Hermitian if T is self-adjoint (Hermitian),
unitary if T is unitary,
normal if T is normal.

Similarly, for a linear operator T: R" —— R", representing ma-
trices are:

Real symmetric if T is self-adjoint,
orthogonal if T is unitary.

In this connection, remember the following definitions. A square
matrix A = (ajx) is said to be:

Hermitian if AT=A (hence ai; = a;)
skew-Hermitian if AT=—A (hence ay; = —ai)
unitary if AT=A""

normal if AAT=ATA.

A real square matrix A = (a;) is said to be:

(Real) symmetric if AT= A (hence ay; = a;)
(real) skew-symmetric if AT=—A (hence ay; = —aj)
orthogonal if AT=A"".

Hence a real Hermitian matrix is a (real) symmetric matrix. A real
skew-Hermitian matrix is a (real) skew-symmetric matrix. A real
unitary matrix is an orthogonal matrix. (Hermitian matrices are named
after the French mathematician, Charles Hermite, 1822-1901.) 1

Let us return to linear operators on arbitrary Hilbert spaces and
state an important and rather simple criterion for self-adjointness.

3.10-3 Theorem (Self-adjointness). ILet T: H—— H be a bounded
linear operator on a Hilbert space H. Then:
(a) If T is self-adjoint, (Tx, x) is real for all x € H.

(b) If H is complex and (Tx, x) is real for all x € H, the operator T
is self-adjoint.
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Proof. (a) If T is self-adjoint, then for all x,

(Tx, x)={(x, Tx)=(Tx, x).

Hence (Tx, x) is equal to its complex conjugate, so that it is real.

(b) If (Tx, x) is real for all x, then

(Tx, x)=(Tx, x)={x, T*x)={(T*x, x).
Hence

0=(Tx, x)—{(T*x, x)={(T—T*)x, x)
and T—T*=0 by Lemma 3.9-3(b) since H is complex. §

In part (b) of the theorem it is essential that H be complex. This is
clear since for a real H the inner product is real-valued, which makes

(Tx, x) real without any further assumptions about the linear operator
P 24

Products (composites®) of self-adjoint operators appear quite
often in applications, so that the following theorem will be useful.

3.10-4 Theorem (Self-adjointness of product). The product of two
bounded self-adjoint linear operators S and T on a Hilbert space H is
self-adjoint if and only if the operators commute,

ST=TS.
Proof. By (6g) in the last section and by the assumption,

(ST)*=T*S*=TS.

Hence

ST=(ST)* — ST

Il
%

This completes the proof. 1

Sequences of self-adjoint operators occur in various problems, and
for them we have

¢ A review of terms and notations in connection with the composition of mappings is
included in A1.2, Appendix I.



