that is,

$$0 = \langle Q(\alpha x + y), \alpha x + y \rangle$$

= $|\alpha|^2 \langle Qx, x \rangle + \langle Qy, y \rangle + \alpha \langle Qx, y \rangle + \bar{\alpha} \langle Qy, x \rangle.$

The first two terms on the right are zero by assumption. $\alpha = 1$ gives

$$\langle Qx, y \rangle + \langle Qy, x \rangle = 0.$$

 $\alpha = i$ gives $\bar{\alpha} = -i$ and

$$\langle Qx, y \rangle - \langle Qy, x \rangle = 0.$$

By addition, (Qx, y) = 0, and Q = 0 follows from (a).

In part (b) of this lemma, it is essential that X be complex. Indeed, the conclusion may not hold if X is real. A counterexample is a rotation Q of the plane \mathbb{R}^2 through a right angle. Q is linear, and $Qx \perp x$, hence $\langle Qx, x \rangle = 0$ for all $x \in \mathbb{R}^2$, but $Q \neq 0$. (What about such a rotation in the complex plane?)

We can now list and prove some general properties of Hilbertadjoint operators which one uses quite frequently in applying these operators.

3.9-4 Theorem (Properties of Hilbert-adjoint operators). Let H_1 , H_2 be Hilbert spaces, $S: H_1 \longrightarrow H_2$ and $T: H_1 \longrightarrow H_2$ bounded linear operators and α any scalar. Then we have

(a)
$$\langle T^*y, x \rangle = \langle y, Tx \rangle$$
 $(x \in H_1, y \in H_2)$

(b)
$$(S+T)^* = S^* + T^*$$

(c)
$$(\alpha T)^* = \bar{\alpha} T^*$$

(6) (d)
$$(T^*)^* = T$$

(e)
$$||T^*T|| = ||TT^*|| = ||T||^2$$

$$T^*T = 0 \iff T = 0$$

(g)
$$(ST)^* = T^*S^*$$
 (assuming $H_2 = H_1$).

Proof. (a) From (1) we have (6a):

$$\langle T^*y, x \rangle = \overline{\langle x, T^*y \rangle} = \overline{\langle Tx, y \rangle} = \langle y, Tx \rangle.$$

(b) By (1), for all x and y,

$$\langle x, (S+T)^*y \rangle = \langle (S+T)x, y \rangle$$

$$= \langle Sx, y \rangle + \langle Tx, y \rangle$$

$$= \langle x, S^*y \rangle + \langle x, T^*y \rangle$$

$$= \langle x, (S^* + T^*)y \rangle.$$

Hence $(S+T)^*y = (S^*+T^*)y$ for all y by 3.8-2, which is (6b) by definition.

(c) Formula (6c) must not be confused with the formula $T^*(\alpha x) = \alpha T^* x$. It is obtained from the following calculation and subsequent application of Lemma 3.9-3(a) to $Q = (\alpha T)^* - \bar{\alpha} T^*$.

$$\langle (\alpha T)^* y, x \rangle = \langle y, (\alpha T) x \rangle$$

$$= \langle y, \alpha(Tx) \rangle$$

$$= \bar{\alpha} \langle y, Tx \rangle$$

$$= \bar{\alpha} \langle T^* y, x \rangle$$

$$= \langle \bar{\alpha} T^* y, x \rangle.$$

(d) $(T^*)^*$ is written T^{**} and equals T since for all $x \in H_1$ and $y \in H_2$ we have from (6a) and (1)

$$\langle (T^*)^*x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$$

and (6d) follows from Lemma 3.9-3(a) with $Q = (T^*)^* - T$.

(e) We see that $T^*T: H_1 \longrightarrow H_1$, but $TT^*: H_2 \longrightarrow H_2$. By the Schwarz inequality,

$$||Tx||^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle \le ||T^*Tx|| \, ||x|| \le ||T^*T|| \, ||x||^2.$$

Taking the supremum over all x of norm 1, we obtain $||T||^2 \le ||T^*T||$. Applying (7), Sec. 2.7, and (2), we thus have

$$||T||^2 \le ||T^*T|| \le ||T^*|| ||T|| = ||T||^2.$$

Hence $||T^*T|| = ||T||^2$. Replacing T by T^* and using again (2), we also have

$$||T^{**}T^{*}|| = ||T^{*}||^{2} = ||T||^{2}.$$

Here $T^{**} = T$ by (6d), so that (6e) is proved.

- (f) From (6e) we immediately obtain (6f).
- (g) Repeated application of (1) gives

$$\langle x, (ST)^* y \rangle = \langle (ST)x, y \rangle = \langle Tx, S^* y \rangle = \langle x, T^* S^* y \rangle.$$

Hence $(ST)^*y = T^*S^*y$ by 3.8-2, which is (6g) by definition.

Problems

- 1. Show that $0^* = 0$, $I^* = I$.
- **2.** Let H be a Hilbert space and $T: H \longrightarrow H$ a bijective bounded linear operator whose inverse is bounded. Show that $(T^*)^{-1}$ exists and

$$(T^*)^{-1} = (T^{-1})^*$$
.

- 3. If (T_n) is a sequence of bounded linear operators on a Hilbert space and $T_n \longrightarrow T$, show that $T_n^* \longrightarrow T^*$.
- **4.** Let H_1 and H_2 be Hilbert spaces and $T: H_1 \longrightarrow H_2$ a bounded linear operator. If $M_1 \subset H_1$ and $M_2 \subset H_2$ are such that $T(M_1) \subset M_2$, show that $M_1^{\perp} \supset T^*(M_2^{\perp})$.
- **5.** Let M_1 and M_2 in Prob. 4 be closed subspaces. Show that then $T(M_1) \subseteq M_2$ if and only if $M_1^{\perp} \supseteq T^*(M_2^{\perp})$.
- **6.** If $M_1 = \mathcal{N}(T) = \{x \mid Tx = 0\}$ in Prob. 4, show that
 - (a) $T^*(H_2) \subset M_1^{\perp}$, (b) $[T(H_1)]^{\perp} \subset \mathcal{N}(T^*)$, (c) $M_1 = [T^*(H_2)]^{\perp}$.

- 7. Let T_1 and T_2 be bounded linear operators on a complex Hilbert space H into itself. If $\langle T_1 x, x \rangle = \langle T_2 x, x \rangle$ for all $x \in H$, show that $T_1 = T_2$.
- **8.** Let $S = I + T^*T$: $H \longrightarrow H$, where T is linear and bounded. Show that S^{-1} : $S(H) \longrightarrow H$ exists.

$$Tx = \sum_{i=1}^{n} \langle x, v_i \rangle w_i \qquad [v_i, w_i \in H].$$

3.10 Self-Adjoint, Unitary and Normal Operators

Classes of bounded linear operators of great practical importance can be defined by the use of the Hilbert-adjoint operator as follows.

3.10-1 Definition (Self-adjoint, unitary and normal operators). A bounded linear operator $T: H \longrightarrow H$ on a Hilbert space H is said to be

self-adjoint or Hermitian if
$$T^* = T$$
, unitary if T is bijective and $T^* = T^{-1}$, normal if $TT^* = T^*T$.

The Hilbert-adjoint operator T^* of T is defined by (1), Sec. 3.9, that is,

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

If T is self-adjoint, we see that the formula becomes

$$\langle Tx, y \rangle = \langle x, Ty \rangle.$$

If T is self-adjoint or unitary, T is normal.

This can immediately be seen from the definition. Of course, a normal operator need not be self-adjoint or unitary. For example, if $I: H \longrightarrow H$ is the identity operator, then T = 2iI is normal since $T^* = -2iI$ (cf. 3.9-4), so that $TT^* = T^*T = 4I$ but $T^* \neq T$ as well as $T^* \neq T^{-1} = -\frac{1}{2}iI$.

Operators which are not normal will easily result from the next example. Another operator which is not normal is T in Prob. 10, Sec. 3.9, as the reader may prove.

The terms in Def. 3.10-1 are also used in connection with matrices. We want to explain the reason for this and mention some important relations, as follows.

3.10-2 Example (Matrices). We consider \mathbb{C}^n with the inner product defined by (cf. 3.1-4)

$$\langle x, y \rangle = x^{\mathsf{T}} \bar{y},$$

where x and y are written as column vectors, and T means transposition; thus $x^{\mathsf{T}} = (\xi_1, \dots, \xi_n)$, and we use the ordinary matrix multiplication.

Let $T: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear operator (which is bounded by Theorem 2.7-8). A basis for \mathbb{C}^n being given, we can represent T and its Hilbert-adjoint operator T^* by two n-rowed square matrices, say, A and B, respectively.

Using (2) and the familiar rule $(Bx)^T = x^TB^T$ for the transposition of a product, we obtain

$$\langle Tx, y \rangle = (Ax)^{\mathsf{T}} \bar{y} = x^{\mathsf{T}} A^{\mathsf{T}} \bar{y}$$

and

$$\langle x, T^* y \rangle = x^\mathsf{T} \bar{B} \bar{y}.$$

By (1), Sec. 3.9, the left-hand sides are equal for all $x, y \in \mathbb{C}^n$. Hence we must have $A^T = \overline{B}$. Consequently,

$$B = \bar{A}^{\mathsf{T}}$$
.

Our result is as follows.

If a basis for \mathbb{C}^n is given and a linear operator on \mathbb{C}^n is represented by a certain matrix, then its Hilbert-adjoint operator is represented by the complex conjugate transpose of that matrix.

Consequently, representing matrices are

Hermitian if T is self-adjoint (Hermitian), unitary if T is unitary, normal if T is normal.

Similarly, for a linear operator $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, representing matrices are:

Real symmetric if T is self-adjoint, orthogonal if T is unitary.

In this connection, remember the following definitions. A square matrix $A = (\alpha_{ik})$ is said to be:

Hermitian if
$$\bar{A}^{\mathsf{T}} = A$$
 (hence $\bar{\alpha}_{kj} = \alpha_{jk}$) skew-Hermitian if $\bar{A}^{\mathsf{T}} = -A$ (hence $\bar{\alpha}_{kj} = -\alpha_{jk}$) unitary if $\bar{A}^{\mathsf{T}} = A^{-1}$ (hence $\bar{\alpha}_{kj} = -\alpha_{jk}$) normal if $A\bar{A}^{\mathsf{T}} = \bar{A}^{\mathsf{T}}A$.

A real square matrix $A = (\alpha_{ik})$ is said to be:

(Real) symmetric if
$$A^{\mathsf{T}} = A$$
 (hence $\alpha_{kj} = \alpha_{jk}$) (real) skew-symmetric if $A^{\mathsf{T}} = -A$ (hence $\alpha_{kj} = -\alpha_{jk}$) orthogonal if $A^{\mathsf{T}} = A^{-1}$.

Hence a real Hermitian matrix is a (real) symmetric matrix. A real skew-Hermitian matrix is a (real) skew-symmetric matrix. A real unitary matrix is an orthogonal matrix. (Hermitian matrices are named after the French mathematician, Charles Hermite, 1822-1901.)

Let us return to linear operators on arbitrary Hilbert spaces and state an important and rather simple criterion for self-adjointness.

- **3.10-3 Theorem (Self-adjointness).** Let $T: H \longrightarrow H$ be a bounded linear operator on a Hilbert space H. Then:
 - (a) If T is self-adjoint, $\langle Tx, x \rangle$ is real for all $x \in H$.
 - (b) If H is complex and $\langle Tx, x \rangle$ is real for all $x \in H$, the operator T is self-adjoint.

Proof. (a) If T is self-adjoint, then for all x,

$$\overline{\langle Tx, x\rangle} = \langle x, Tx\rangle = \langle Tx, x\rangle.$$

Hence $\langle Tx, x \rangle$ is equal to its complex conjugate, so that it is real.

(b) If $\langle Tx, x \rangle$ is real for all x, then

$$\langle Tx, x \rangle = \overline{\langle Tx, x \rangle} = \overline{\langle x, T^*x \rangle} = \langle T^*x, x \rangle.$$

Hence

$$0 = \langle Tx, x \rangle - \langle T^*x, x \rangle = \langle (T - T^*)x, x \rangle$$

and $T - T^* = 0$ by Lemma 3.9-3(b) since H is complex.

In part (b) of the theorem it is essential that H be complex. This is clear since for a real H the inner product is real-valued, which makes $\langle Tx, x \rangle$ real without any further assumptions about the linear operator T.

Products (composites⁶) of self-adjoint operators appear quite often in applications, so that the following theorem will be useful.

3.10-4 Theorem (Self-adjointness of product). The product of two bounded self-adjoint linear operators S and T on a Hilbert space H is self-adjoint if and only if the operators commute,

$$ST = TS$$
.

Proof. By (6g) in the last section and by the assumption,

$$(ST)^* = T^*S^* = TS.$$

Hence

$$ST = (ST)^* \iff ST = TS.$$

This completes the proof.

Sequences of self-adjoint operators occur in various problems, and for them we have

⁶ A review of terms and notations in connection with the composition of mappings is included in A1.2, Appendix 1.