Using Chain Rule with Partial Derivatives

The Chain Rule for functions of a single variable studied in first stage says that when $w=f(x)$ is a differentiable function of x and $x=g(t)$ is a differentiable function of t, w is a differentiable function of t and $\frac{d w}{d t}$ can be calculated by the formula $\frac{d w}{d t}=\frac{d w}{d x} \frac{d x}{d t}$.
For functions of two or more variables the Chain Rule has several forms. The form depends on how many variables are involved, but there are three general cases as a following:

Case1: If $w=f(x, y, z)$ is a differentiable function and $x=x(t), y=$ $y(t)$, and $z=z(\mathrm{t})$, are differentiable functions of t, then:

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

Example: Prove that $\frac{\boldsymbol{d} \boldsymbol{w}}{\boldsymbol{d} t}=\cos 2 t$, if $w=x y$, and $x=\cos t, y=\sin t$.
Solution: $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}$
Note that $\frac{\partial w}{\partial x}=y, \frac{d x}{d t}=-\sin t, \frac{\partial w}{\partial y}=x$, and $\frac{d y}{d t}=\cos t$.
Now, $\frac{d w}{d t}=-y \sin t+x \cos t$,

$$
\begin{aligned}
& \frac{d w}{d t}=-\sin t \sin t+\cos t \cos t \\
& \frac{d w}{d t}=\cos ^{2} t-\sin ^{2} t=\cos 2 t
\end{aligned}
$$

Case2: If $w=f(x, y, z)$ where $x=g(r, s), y=h(r, s)$, and $z=$ $k(r, s)$. If all four functions are differentiable functions, then w have partial derivatives with respect to r and s given by the formulas:

$$
\begin{gathered}
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \\
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}
\end{gathered}
$$

Example: Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x^{2}+y^{2}+z^{2}$, and $x=r^{2}+s, y=r \ln s, z=\tan ^{-1}\left(s^{2}+r^{2}\right)$.
Solution: By using the formulas in case2
$\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\quad \frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\quad \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$,
$\frac{\partial w}{\partial r}=(2 x)(2 r)+(2 y)(\ln s)+(2 z)\left(\frac{2 r}{1+\left(s^{2}+r^{2}\right)^{2}}\right)$,
$\frac{\partial w}{\partial r}=\left(2 r^{2}+2 s\right)(2 r)+(2 r \ln s) \ln s+\left(2 \tan ^{-1}\left(s^{2}+r^{2}\right)\right)\left(\frac{2 r}{1+\left(s^{2}+r^{2}\right)^{2}}\right)$,
$\frac{\partial w}{\partial r}=\left(4 r^{3}+4 r s\right)+\left(2 r \ln ^{2} s\right)+\left(\frac{4 r \tan ^{-1}\left(s^{2}+r^{2}\right)}{1+\left(s^{2}+r^{2}\right)^{2}}\right)$
Now,
$\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\quad \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\quad \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$,
$\frac{\partial \boldsymbol{w}}{\boldsymbol{\partial s}}=(2 x)(1)+(2 y)\left(\frac{r}{s}\right)+(2 z)\left(\frac{2 s}{1+\left(s^{2}+r^{2}\right)^{2}}\right)$
$\frac{\boldsymbol{\partial} \boldsymbol{w}}{\boldsymbol{\partial} \boldsymbol{s}}=2\left(r^{2}+s\right) \quad+(\boldsymbol{r} \boldsymbol{\operatorname { l n }} \boldsymbol{s}) \frac{r}{s}+\left(2 \tan ^{-1}\left(s^{2}+r^{2}\right)\right)\left(\frac{2 \boldsymbol{s}}{1+\left(s^{2}+r^{2}\right)^{2}}\right)$
$\frac{\boldsymbol{\partial} \boldsymbol{w}}{\boldsymbol{\partial} \boldsymbol{s}}=\left(2 r^{2}+2 s\right)+\frac{2 r^{2} \ln s}{s}+\left(\frac{4 s \tan ^{-1}\left(s^{2}+r^{2}\right)}{1+\left(s^{2}+r^{2}\right)^{2}}\right)$
Case3: If $w=f(x)$ and $x=g(r, s)$, then w has partial derivatives with respect to r and s given by the formulas:

$$
\begin{aligned}
& \frac{\partial w}{\partial r}=\frac{d w}{d x} \frac{\partial x}{\partial r} \\
& \frac{\partial w}{\partial s}=\frac{d w}{d x} \frac{\partial x}{\partial s}
\end{aligned}
$$

Example: If $\boldsymbol{w}=\boldsymbol{f}(\boldsymbol{x})$, and $\boldsymbol{x}=\boldsymbol{r}-\boldsymbol{s}$, then show that $\frac{\partial w}{\partial r} \cdot \frac{\partial w}{\partial s}=-\left[\boldsymbol{f}^{\prime}(\boldsymbol{x})\right]^{2}$
Solution: By using the formulas in case3

$$
\begin{array}{l|l}
\frac{\partial w}{\partial w}=\frac{d w}{d x} \frac{\partial x}{\partial r} & \frac{\partial w}{\partial s}=\frac{d w}{d x} \frac{\partial x}{\partial s} \\
\frac{\partial w}{\partial r}=\frac{d w}{d x}(\mathbf{1})=\left[\boldsymbol{f}^{\prime}(\boldsymbol{x})\right] & \frac{\partial w}{\partial s}=\frac{d w}{d x}(-\mathbf{1})=-\boldsymbol{f}^{\prime}(\boldsymbol{x}) \\
\text { Thus, } \frac{\partial w}{\partial r} \cdot \frac{\partial w}{\partial s}=-\left[\boldsymbol{f}^{\prime}(\boldsymbol{x})\right]^{\mathbf{2}} &
\end{array}
$$

1) Find $\frac{d w}{d t}$ if $\ln \left(z^{2}+x^{2}+y^{2}\right), x=t^{2}, y=e^{t^{2}}, z=\sin ^{-1} t$ 2) Find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial s}$ if $f(x, y, z)=\sqrt{z^{2}+x^{2}+y^{2}}$,

$$
x=e^{r} \cos (s), y=e^{r} \sin (s), z=e^{r}
$$

3) If $w=f(s)$ and $s=y+a x$, then show that $\frac{\partial w}{\partial x}-\mathrm{a} \frac{\partial w}{\partial y}=0$
4) If $w=f(x, y) \quad x=r \cos (s), y=r \sin (s)$, then show that $\left(\frac{\partial w}{\partial r}\right)^{2}-r^{-2}\left(\frac{\partial w}{\partial s}\right)^{2}=\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}$
5) $z=f(x, y), x=u+v, y=u-v$, then:
show that $z_{u} z_{v}=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}$
6) Suppose that $z=f(x-i y)+g(x+i y)$.

Prove that $z_{x x}+z_{y y}=0$, where $\sqrt{-1}=i$

