Lecture Notes in Foundations of Mathematics

Department of Mathematics

Al-Anbar University

Logic and Proofs

Section 1.1: Propositions and Connectives

Definition 1.1.1

A **proposition P** is a sentence which is either true \mathbf{T} or false \mathbf{F} . That is, the truth values of propositions are \mathbf{T} or \mathbf{F} .

Example 1.1.1

Consider the following sentences:

• Propositions:

a) $\frac{1}{2}$ is a rational number.

[T].

b)
$$2+4=1$$
.

 $[\mathbf{F}]$.

• Not propositions:

c) How are you doing?

[not a proposition].

d) $x^2 = 36$.

[where is x coming from?].

e) This sentence is false.

[depends on the given sentence!].

The previous propositions studied in a and b are called **simple** propositions. **Compound** propositions can be formed by **connectives** with simple propositions. For example,

Compound proposition: 1+2=5 "and" the sun is made of an orange.

Definition 1.1.2

Let \mathbf{P} and \mathbf{Q} be two propositions. Then,

1. the **conjunction** of **P** and **Q**, denoted by $\mathbf{P} \wedge \mathbf{Q}$, is the proposition "**P** and **Q**". $\mathbf{P} \wedge \mathbf{Q}$ is true exactly when both **P** and **Q** are true.

- 2. the **disjunction** of \mathbf{P} and \mathbf{Q} , denoted by $\mathbf{P} \vee \mathbf{Q}$, is the proposition " \mathbf{P} or \mathbf{Q} ". $\mathbf{P} \vee \mathbf{Q}$ is true exactly when at least one of \mathbf{P} or \mathbf{Q} is true.
- 3. the **negation** of **P**, denoted by \sim **P**, is the proposition "not **P**". \sim **P** is true exactly when **P** is false.

Example 1.1.2

Let \mathbf{P} be "Kuwait is an island" and let \mathbf{Q} be "Sea water contains salt". Discuss $\mathbf{P} \wedge \mathbf{Q}$, $\mathbf{P} \vee \mathbf{Q}$, and $\sim \mathbf{P}$.

Solution:

It is clear the \mathbf{P} is false and \mathbf{Q} is true. Thus,

1. $\mathbf{P} \wedge \mathbf{Q}$: Kuwait is an island and sea water contains salt. [F].

2. $\mathbf{P} \vee \mathbf{Q}$: Kuwait is an island or sea water contains salt. [T].

3. \sim **P**: It is not the case that Kuwait is an island. [T].

_P	Q	$\mathbf{P} \wedge \mathbf{Q}$	$\mathbf{P}\vee\mathbf{Q}$	\sim P	$\sim {f Q}$
${f T}$	${f T}$	${f T}$	${f T}$	\mathbf{F}	\mathbf{F}
$\overline{\mathbf{T}}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
F	${f T}$	${f F}$	${f T}$	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	${f F}$	${f F}$	\mathbf{T}	${f T}$

Definition 1.1.3

A **propositional form** is an expression involving finitely many propositions connected by connectives such as \land , \lor , and \sim .

Example 1.1.3

Let \mathbf{P}, \mathbf{Q} , and \mathbf{R} be propositions. Write down the truth table of the propositional form $((\mathbf{P} \wedge \mathbf{Q}) \vee (\mathbf{P} \vee (\sim \mathbf{R})))$.

Solution:

Р	Q	R	$\sim {f R}$	$\mathbf{P}\wedge\mathbf{Q}$	$\mathbf{P} \lor (\sim \mathbf{R})$	$\Big((\mathbf{P}\wedge\mathbf{Q})\vee(\mathbf{P}\vee(\sim\mathbf{R}))\Big)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	${f F}$	${f T}$	${f T}$	${f T}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	T	\mathbf{T}	T	${f T}$
\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	T	${f T}$
\mathbf{F}	${f T}$	${f T}$	\mathbf{F}	\mathbf{F}	${f F}$	${f F}$
\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$
F	F	F	\mathbf{T}	\mathbf{F}	${f T}$	${f T}$

Definition 1.1.4

Two propositional forms \mathbf{P} and \mathbf{Q} are called **equivalent** if and only if their truth tables are identical. In that case, we write $\mathbf{P} \equiv \mathbf{Q}$.

Definition 1.1.5

A denial of a proposition **P** is any proposition equivalent to \sim **P**.

A proposition \mathbf{P} has only one negation " $\sim \mathbf{P}$ ", but it has many denials. For instance, $\sim \mathbf{P}$, $\sim \sim \sim \mathbf{P}$, and $\sim \sim \sim \sim \sim \mathbf{P}$ are all examples of denials. Note that $\sim (\sim \mathbf{P})$ is simply \mathbf{P} .

Example 1.1.4

Let \mathbf{P} be " π is an irrational number". Find the negation of \mathbf{P} , and give some examples of denials of \mathbf{P} .

Solution:

- negation $\sim \mathbf{P}$: It is not the case that π is irrational.
- denials of **P**: a. π is rational. b. π is the quotient of two integers r/s. c. π has a finite decimal expansion.

Note that since \mathbf{P} is true, all of its denials are false.

Definition 1.1.6

A propositional form is called a **tautology** if it is true for all possible truth values of its components. It is called a **contradiction** if it is the negation of a tautology.

Example 1.1.5

Show that $((\mathbf{P} \vee \mathbf{Q}) \vee ((\sim \mathbf{P}) \wedge (\sim \mathbf{Q})))$ is a tautology for any propositions \mathbf{P} and \mathbf{Q} .

Solution:

Р	Q	$\sim {f P}$	$\sim {f Q}$	$\mathbf{P}\vee\mathbf{Q}$	$(\sim \mathbf{P}) \wedge (\sim \mathbf{Q})$	$\big((\mathbf{P}\vee\mathbf{Q})\vee((\sim\mathbf{P})\wedge(\sim\mathbf{Q}))\big)$
\mathbf{T}	\mathbf{T}	${f F}$	${f F}$	${f T}$	${f F}$	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f F}$	${f T}$
\mathbf{F}	${f T}$	${f T}$	${f F}$	${f T}$	${f F}$	${f T}$
${f F}$	${f F}$	\mathbf{T}	\mathbf{T}	${f F}$	${f T}$	${f T}$

Moreover, it can be seen that the negation of $((\mathbf{P} \vee \mathbf{Q}) \vee ((\sim \mathbf{P}) \wedge (\sim \mathbf{Q})))$ is a contradiction.

Remark 1.1.1

The negation of a tautology is a contradiction, and the negation of a contradiction is a tautology.

Section 1.2: Conditionals and Biconditionals

Definition 1.2.1

Given two propositions \mathbf{P} and \mathbf{Q} , the conditional sentence $\mathbf{P} \Rightarrow \mathbf{Q}$ (reads " \mathbf{P} implies \mathbf{Q} ") is the proposition "if \mathbf{P} , then \mathbf{Q} ". In that case, \mathbf{P} is called **antecedent** and \mathbf{Q} is called **consequent**.

Remark 1.2.1

The proposition $\mathbf{P} \Rightarrow \mathbf{Q}$ is true whenever \mathbf{P} is false or \mathbf{Q} is true. In general, $\mathbf{P} \Rightarrow \mathbf{Q}$ is equivalent to $(\sim \mathbf{P}) \vee \mathbf{Q}$.

Example 1.2.1

Consider the following propositions:

a) if "x is an odd integer", then "x + 1 is an even integer". [T].

b) if "2 + 1 = 0", then "1 + 1 = 0". [T].

c) if "1 - 1 = 0", then "2 + 9 = 1". [F].

Definition 1.2.2

For propositions **P** and **Q**, the **converse** of **P** \Rightarrow **Q** is **Q** \Rightarrow **P**, and the **contrapositive** of **P** \Rightarrow **Q** is $(\sim \mathbf{Q}) \Rightarrow (\sim \mathbf{P})$.

Theorem 1.2.1

For any propositions \mathbf{P} and \mathbf{Q} , we have

(i) $\mathbf{P} \Rightarrow \mathbf{Q}$ is equivalent to $(\sim \mathbf{Q}) \Rightarrow (\sim \mathbf{P})$, and (ii) $\mathbf{P} \Rightarrow \mathbf{Q}$ is not equivalent to $\mathbf{Q} \Rightarrow \mathbf{P}$.

Proof:

We prove both results in the following truth table.

Р	Q	$\sim {f P}$	$\sim {f Q}$	$\mathbf{P}\Rightarrow\mathbf{Q}$	$\mathbf{Q}\Rightarrow\mathbf{P}$	$\sim \mathbf{Q} \Rightarrow \sim \mathbf{P}$
${f T}$	${f T}$	${f F}$	${f F}$	${f T}$	${f T}$	${f T}$
\mathbf{T}	\mathbf{F}	F	\mathbf{T}	F	\mathbf{T}	\mathbf{F}
\mathbf{F}	${f T}$	${f T}$	\mathbf{F}	${f T}$	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f T}$	${f T}$	T

Definition 1.2.3

Let **P** and **Q** be two propositions. The **biconditional** sentence $\mathbf{P} \Leftrightarrow \mathbf{Q}$ is "**P** if and only if (iff.) **Q**". $\mathbf{P} \Leftrightarrow \mathbf{Q}$ is true exactly when both **P** and **Q** have the same truth value.

Remark 1.2.2

The following phrases are translated as $\mathbf{P} \Rightarrow \mathbf{Q}$ for any propositions \mathbf{P} and \mathbf{Q} :

$ullet$ if ${f P}$, then ${f Q}$.	• if $a > 5$, then $a > 3$.
ullet P implies Q .	• $a > 5$ implies $a > 3$.
$ullet$ P is sufficient for ${f Q}$.	• $a > 5$ is sufficient for $a > 3$.
ullet P only if Q .	• $a > 5$ only if $a > 3$
• Q , if P .	• $a > 3$, if $a > 5$.
ullet Q whenever P .	• $a > 3$ whenever $a > 5$.
ullet Q is necessary for P .	• $a > 3$ is necessary for $a > 5$.
\bullet Q , when P .	• $a > 3$, when $a > 5$.

Remark 1.2.3

Moreover, the following phrases are translated as $P \Leftrightarrow Q$ for any propositions P and Q:

- P if and only if Q.
 |x| = 2 iff x² = 4.
 P if, but only if, Q.
 |x| = 2 if, but only if, x² = 4.
 P is equivalent to Q.
 |x| = 2 is equivalent to x² = 4.
- **P** is necessary and sufficient for **Q**. |x| = 2 is necessary and sufficient for $x^2 = 4$.

Theorem 1.2.2

Let \mathbf{P} , \mathbf{Q} , and \mathbf{R} be propositions. Then,

a.
$$\mathbf{P} \Rightarrow \mathbf{Q} \equiv (\sim \mathbf{P}) \vee \mathbf{Q}$$
.

b.
$$\mathbf{P} \Leftrightarrow \mathbf{Q} \equiv (\mathbf{P} \Rightarrow \mathbf{Q}) \wedge (\mathbf{Q} \Rightarrow \mathbf{P}).$$

c. $\sim (\mathbf{P} \wedge \mathbf{Q}) \equiv (\sim \mathbf{P}) \vee (\sim \mathbf{Q}).$

c.
$$\sim (\mathbf{P} \wedge \mathbf{Q}) \equiv (\sim \mathbf{P}) \vee (\sim \mathbf{Q})$$

$$\mathrm{d} A. \qquad \sim (\mathbf{P} \vee \mathbf{Q}) \qquad \equiv \quad (\sim \mathbf{P}) \wedge (\sim \mathbf{Q}).$$

e.
$$\sim (\mathbf{P} \Rightarrow \mathbf{Q}) \equiv \mathbf{P} \wedge (\sim \mathbf{Q}).$$

$$\mathrm{f.} \qquad \sim (\mathbf{P} \wedge \mathbf{Q}) \qquad \equiv \quad \mathbf{P} \Rightarrow (\sim \mathbf{Q}).$$

g.
$$\mathbf{P} \wedge (\mathbf{Q} \vee \mathbf{R}) \equiv (\mathbf{P} \wedge \mathbf{Q}) \vee (\mathbf{P} \wedge \mathbf{R}).$$

h.
$$\mathbf{P} \vee (\mathbf{Q} \wedge \mathbf{R}) \equiv (\mathbf{P} \vee \mathbf{Q}) \wedge (\mathbf{P} \vee \mathbf{R}).$$

Proof:

b.

Р	\mathbf{Q}	$\mathbf{P}\Leftrightarrow\mathbf{Q}$	$\mathbf{P}\Rightarrow\mathbf{Q}$	$\mathbf{Q}\Rightarrow\mathbf{P}$	$(\mathbf{P}\Rightarrow\mathbf{Q})\wedge(\mathbf{Q}\Rightarrow\mathbf{P})$
${f T}$	${f T}$	${f T}$	${f T}$	${f T}$	${f T}$
$\overline{\mathbf{T}}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	${f F}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f T}$	${f T}$

g.

Р	Q	R	$\mathbf{Q}\vee\mathbf{R}$	$\mathbf{P} \wedge (\mathbf{Q} \vee \mathbf{R})$	$\mathbf{P}\wedge\mathbf{Q}$	$\mathbf{P}\wedge\mathbf{R}$	$(\mathbf{P}\vee\mathbf{Q})\vee(\mathbf{P}\vee\mathbf{R})$
\mathbf{T}	${f T}$	\mathbf{T}	${f T}$	${f T}$	${f T}$	${f T}$	${f T}$
$\overline{\mathbf{T}}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	F	${f T}$
$\overline{\mathbf{T}}$	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	F	\mathbf{T}	${f T}$
$\overline{\mathbf{T}}$	F	\mathbf{F}	F	\mathbf{F}	F	F	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	F	F	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	F	F	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	F	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	\mathbf{F}