8 Chapter 1. Logic and Proofs

Section 1.3: Quantifiers

* NOTATIONS:

e N=1{1,23,---} is the set of natural numbers.
o Z={---,-2,—1,0,1,2,---} is the set of integer numbers.
o Q= {§ :p,q € Z and ¢ # 0} is the set of rational numbers.

e R is the set of real numbers.

J

The sentence x > 5 is not a proposition, unless we assign a value to z. It is an open sentence. In
general, an open sentence with n variables is denoted by P(zi, 2, -+ ,x,). For example, the open
sentence P(xzq,xq,x3): "1 equals to x5 + x3” is an open sentence. On the other hand, P(7,3,4) and

P(7,2,3) are propositions with true and false values, respectively.

Definition 1.3.1

The set of objects for which an open sentence is true is called the truth set, and is denoted
by 7.

On the other hand, the set from where the objects can be taken from is called the universe,
and is denoted by . In particular, two open sentences are said to be equivalent for a particular

universe if and only if their truth sets are equal.

Example 1.3.1 ]

Let Y = N. Then, P(x) : x +3 > 7 is equivalent to Q(z) : x > 4, since T = {5,6,7,--- } for
both P and @.
Also, P(z) : 22 = 4 is equivalent to Q(z) : z = 2. However, if U was the set of all integers,

then P(z) : ° = 4 with truth set {—2,2} is not equivalent to Q(z) : z = 2 with truth set

{2},

Definition 1.3.2

Let P(x) be an open sentence with variable z € Y. Then,

a) The sentence " (Vz)P(z)” reads as "for all z, P(z)”. It is true itt 7 = U for P(x). "V”

is called the universal quantifiers.
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itf 7 contains only one element.

b) The sentence ”(dx)P(x)” reads as "there exists x such that P(x)”. It is true itt 7 # ()
(the empty set). "3 is called the existential quantifiers.
¢) The sentence ”(3!z)P(x)” reads as "there exists a unique z such that P(z)”. It is true

"l is called the unique existential quantifiers.

Example 1.3.2

Solution:

or false and the corresponding truth set.

Let U = R. Decide the truth value and the truth set for each of the following.

Consider the following table where we difterent sentences along with its truth value as true

sentence TorF 7T

a. (Vz)(z > 3) F 3, 00).

b. (Vz)(|z| > 0) F R\{0}.

c. (Vz)(z—1<x) T R.

d. (3z)(x > 3) T 3, 00).

e. (Az)(|z| = 0) T {0}.

f. 3lz)(|z| = 2) F {—2,2}

g. (3z)(x* = —4) F 0.

h. (3z)(Fy)2z+y=0Az—y=1) T {r=1%y=-2}
i Az)3Y)(2z+y=0Vz—y=1) F (z,y) € {(0,0),(1,0),(3,2),--- }
j- (V) (Vy)(z* +y° > 0) F R*\(0,0).

Definition 1.3.3

Two quantified sentences are equivalent for a particular universe i ift they have the same truth

set in . Two quantified sentences are equivalent iftf they are equivalent in every universe.

For instance, (Vz)(P(z) A Q(x)) is equivalent to (Vz)(Q(z) A P(z)) and (Vz)[P(z) = Q(z)] is
Q(z) =~ P(z)].

equivalent to (Vz)[~
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Theorem 1.3.1

Let P(z) be an open sentence with a variable z € U for some Y. Then,

a. ~ (Vz)[P(z)] is equivalent to (3z)[~ P(z)].
b. ~ (Jz)[P(x)] is equivalent to (Vz)[~ P(x)].

(a.) The sentence ~ (Vz)[P(z)] is true itt (Vz)[P(z)] is false it the truth set for P(z) is not

the entire universe, i.e. 7 # U iff there exists an z € U such that P(z) is false iff (3z)[~ P(z)]

1S true.

(b.) The sentence ~ (Jz)[P(x)] is true itf (Jx)[P(z)] is false itf the truth set of P(z) is empty
itt (Vz)[~ P(x)] is true.

Remark 1.3.1 '

Let P(x) be an open sentence with a variable z € U for some Y. Then,

(z)P(z) = (32)|P(z) A (V) [P(y) = = = 1]

Example 1.3.3

Find a denial (or the negation) for ”(Vz)[P(z) = Q(z)]"

Solution:

Using Theorem 1.3.1 and Theorem 1.2.2 (part e), we conclude

~ (Vz)[P(z) = Q(z)] = (3z)[~ (P(z) = Q(z))] = (Fz)[P(z) A (~ Q(z))].

Example 1.3.4

Find a denial (or the negation) for ”(3!z)P(x)”.

Solution:
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~ (z)P(z)

Using Remark 1.3.1 and Theorem 1.2.2, we conclude

~ (3z)[P(2) A (VY)[P(y) = = = 3]
vz)| y

8

(Vz)

(Vz)| ~ P(
(Vz)| ~ P(z
(Vz)[ ~ P(
(Vz)| ~ P(

8

vz)|
vz)|

(3)[P(y) Az # y]

11

Example 1.3.5

Find a denial (or the negation) for

(V2)(3z)Fy) | ((z >

Solution:

~ Equation(1.3.5)

2) A (y > z))/\ ~ (Elw)(:v+y < w <:1:z)].

Using Theorem1.3.1 and Theorem 1.2.2, we conclude

(1.3.1)

~ (V2)(3z)3y) |((z > 2) A (y > 2))A ~ (Fw) (z +y < w < 22)|
(32)(Vz)(Vy) ~ |((z > 2) A (y > 2))A ~ (Fw)(z +y < w < 2))]
(32)(V2) (W) | (= > 2) A (y > 2)) =~~ (Fw)(z+y < w < 22)]
(32)(Vz)(Vy) ((:v >z) A (y > z)) = (Jw) (a: +y<w< a:z)]

Example 1.3.6

Let U4 = R. Decide the truth value and the truth set for each of the following.

Solution:
sentence TorF T
a. (Vy)(3z)[x +y = 0] T for any y, £ = —y is a solution.
b. (3z)(Vy)[z + y = 0] F given z = 0 not all ¥ € R is a solution.
c. (3z)(3y)[z* + y* = 10] T for z € R there is y = /10 — z2 € R.
d. (Vy)(3z)(Vz2)|zy = zZ] T for any y € R, z = 0 for any z € R.
e. (Vy)(3z)[z = y?] T for any y € R, z = y? is a solution.
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Section 1.4: Mathematical Proofs

Definition 1.4.1

A proof is a justification of the truth of a given statement called theorem, proposition, claim,

or lemma.

" Remark 1.4.1 l

Tools of proofs: We may use any of the following:

e Axioms: Initial statements which are assumed to be true.
e Theorems: Some previously proved statement can be use.
e Assumptions: Assumed fact about the problem at hand.

e Tautologies: Examples follow:

i Y o A (Excluded Middle).
ba PO (O —rrP) civc oo s s s (Contrapositive).
© Gl e e s } ............................... (Associativity).
PA(QAR)= (PAQ)AR
d. PRI E L BIVIE AR YT (Distributivity).
PV(QAR)& (PVQ)A(PVR) |
en (B0 S B — QLA (O —B)lsnverssmsrrsnsnasanas (Biconditional).
R 2L ) e T @ T N s ey T (Denial of Implication).
!
g. s b sl D R e R L e (De Morgan’s Laws).
~(PVQ) & (~\PA~Q) |
h B Sl P (ON e @] e et e i e tan e it ae (Contradiction).
L [(P=2QAQ=>R) S P=>R) ..o (Transitivity).
jo [ AR Q)] =28 v s cns as cims o cis il 60 i b e ol oo S (Modus Ponens).

In what follows, we consdier different types of proof.
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1.4.1 Type 1: Direct Proof

Direct proof P = Q: Assume P, then --- --- . Therefore, Q.

Example 1.4.1

Let n be an integer. Show that if n is odd, then n + 1 is even.

Solution:

Assume that n = 2k + 1 for some integer k. Then, n+ 1= (2k+1)+ 1. Thatisn+ 1 =
2k +2 =2(k + 1). Therefore, n + 1 is even.

Example 1.4.2

Assume that sin(z) is an odd funtion, i.e. sin(—z) = —sin(z). Show that f(z) = sin?(z) for

any = € R is an even function, i.e. f(—z) = f(z).

Solution:
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f(x). Therefore, f(x) is an even function.

Theorem 1.4.1

Suppose that a, b, and ¢ are integers. If a divides b and b divides ¢, then a divides c.

Since a divides b (a | b), then there is an integer k such that b = ka. Also, since b | ¢ there is

an integer h such that ¢ = hb. Thus, ¢ = hb = h(ka) = (hk)a, and therefore a | c.

Theorem 1.4.2

Let a,b,c€ Z. If a|band a | ¢, then a | b % c.

Since a | b, 3k € Z such that b = ka, and since a | ¢, 3h € Z such that ¢ = ha. Thus,

btc=kaxha=(k=xh)a.

Therefore, a | b+ c.

—
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1.4.2 Type 2: Proof By Contradiction

Contradiction to proof P: Suppose ~ P, then - ----- . Thus Q. Then, ------ . Therefore, ~ Q,
contradiction.

This technique uses the tautology P < [~ P = (QA ~ Q)].

Example 1.4.3

The equation z° +x — 1 = 0 has at most one real root.

Solution:

Let f(z) = 2° +x — 1. Suppose that f(x) has two real roots a and b, then f(a) = f(b) =0. f
is continuouse on |a, b] and is ditferentiable on (a, b) since it is a polynomial. Then, by Rolle’s

Theorem, there is a ¢ € (a,b) such that f'(¢) = 0. But f'(c) = 3¢*+1 # 0 for all ¢ € R. This

is a contradiction. Therefore, f has at most one real root.

Remark 1.4.2 l

e Any square integer has an even number of 2’s as prime factors.

e All natural number greater than 1 has a prime divisor ¢ > 1.

Example 1.4.4

Prove that 1/2 is an irrational number.

Solution:

Recall the fact that any square integer number has an even number of 2’s as prime factors.
Suppose that /2 is rational number. Then, /2 = 15) for some p,q € Z. Thus, 2 = ’;—Z or
p?> = 2¢°. Since p? and ¢* are both square numbers, p? contains an even number of 2’s as
prime factors (might be 0 times for odd numbers) and ¢* contains an even number of 2’s as
prime factors. But then 2¢? has an odd number of 2’s as prime factors and thus p? has an

odd number of 2’s as prime factors because p? = 2¢>. This is a contradiction. Thus, v/2 is an

irrational number.




