Section 1.3: Quantifiers

* NOTATIONS:

- $\mathbb{N} = \{1, 2, 3, \cdots\}$ is the set of **natural numbers**.
- $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ is the set of **integer numbers**.
- $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z} \text{ and } q \neq 0\}$ is the set of **rational numbers**.
- \mathbb{R} is the set of **real numbers**.

The sentence $x \geq 5$ is not a proposition, unless we assign a value to x. It is an open sentence. In general, an open sentence with n variables is denoted by $P(x_1, x_2, \dots, x_n)$. For example, the open sentence $P(x_1, x_2, x_3)$: " x_1 equals to $x_2 + x_3$ " is an open sentence. On the other hand, P(7, 3, 4) and P(7, 2, 3) are propositions with true and false values, respectively.

Definition 1.3.1

The set of objects for which an open sentence is true is called the **truth set**, and is denoted by \mathcal{T} .

On the other hand, the set from where the objects can be taken from is called the **universe**, and is denoted by \mathcal{U} . In particular, two open sentences are said to be equivalent for a particular universe if and only if their truth sets are equal.

Example 1.3.1

Let $\mathcal{U} = \mathbb{N}$. Then, P(x): x + 3 > 7 is equivalent to Q(x): x > 4, since $\mathcal{T} = \{5, 6, 7, \cdots\}$ for both P and Q.

Also, $P(x): x^2 = 4$ is equivalent to Q(x): x = 2. However, if \mathcal{U} was the set of all integers, then $P(x): x^2 = 4$ with truth set $\{-2, 2\}$ is not equivalent to Q(x): x = 2 with truth set $\{2\}$.

Definition 1.3.2

Let $\mathbf{P}(x)$ be an open sentence with variable $x \in \mathcal{U}$. Then,

a) The sentence " $(\forall x)\mathbf{P}(x)$ " reads as "for all x, $\mathbf{P}(x)$ ". It is true iff $\mathcal{T} = \mathcal{U}$ for $\mathbf{P}(x)$. " \forall " is called the **universal quantifiers**.

1.3. Quantifiers

- b) The sentence " $(\exists x)\mathbf{P}(x)$ " reads as "there exists x such that $\mathbf{P}(x)$ ". It is true iff $\mathcal{T} \neq \emptyset$ (the empty set). " \exists is called the **existential quantifiers**.
- c) The sentence " $(\exists!x)\mathbf{P}(x)$ " reads as "there exists a unique x such that $\mathbf{P}(x)$ ". It is true iff \mathcal{T} contains only one element. " $\exists!$ is called the **unique existential quantifiers**.

Example 1.3.2

Let $\mathcal{U} = \mathbb{R}$. Decide the truth value and the truth set for each of the following.

Solution:

Consider the following table where we different sentences along with its truth value as true or false and the corresponding truth set.

sentence	\mathbf{T} or \mathbf{F}	\mathcal{T}
a. $(\forall x)(x \geq 3)$	\mathbf{F}	$[3,\infty)$.
b. $(\forall x)(x > 0)$	${f F}$	$\mathbb{R}\setminus\{0\}.$
c. $(\forall x)(x-1 < x)$	${f T}$	$\mathbb{R}.$
d. $(\exists x)(x \geq 3)$	${f T}$	$[3,\infty)$.
e. $(\exists!x)(x =0)$	${f T}$	{0}.
f. $(\exists !x)(x =2)$	\mathbf{F}	$\{-2, 2\}.$
g. $(\exists x)(x^2 = -4)$	\mathbf{F}	Ø.
h. $(\exists x)(\exists y)(2x + y = 0 \land x - y = 1)$	${f T}$	$\{x = \frac{1}{3}, y = -\frac{2}{3}\}.$
i. $(\exists !x)(\exists !y)(2x + y = 0 \lor x - y = 1)$	${f F}$	$(x,y) \in \{(0,0), (1,0), (3,2), \cdots\}.$
j. $(\forall x)(\forall y)(x^2 + y^2 > 0)$	${f F}$	$\mathbb{R}^2 \setminus (0,0)$.

Definition 1.3.3

Two quantified sentences are equivalent for a particular universe \mathcal{U} iff they have the same truth set in \mathcal{U} . Two quantified sentences are equivalent iff they are equivalent in every universe.

For instance, $(\forall x)(\mathbf{P}(x) \wedge \mathbf{Q}(x))$ is equivalent to $(\forall x)(\mathbf{Q}(x) \wedge \mathbf{P}(x))$ and $(\forall x)[\mathbf{P}(x) \Rightarrow \mathbf{Q}(x)]$ is equivalent to $(\forall x)[\sim \mathbf{Q}(x) \Rightarrow \sim \mathbf{P}(x)]$.

Theorem 1.3.1

Let $\mathbf{P}(x)$ be an open sentence with a variable $x \in \mathcal{U}$ for some \mathcal{U} . Then,

- a. $\sim (\forall x)[\mathbf{P}(x)]$ is equivalent to $(\exists x)[\sim \mathbf{P}(x)]$.
- b. $\sim (\exists x)[\mathbf{P}(x)]$ is equivalent to $(\forall x)[\sim \mathbf{P}(x)]$.

Proof:

- (a.) The sentence $\sim (\forall x)[\mathbf{P}(x)]$ is true iff $(\forall x)[\mathbf{P}(x)]$ is false iff the truth set for $\mathbf{P}(x)$ is not the entire universe, i.e. $\mathcal{T} \neq \mathcal{U}$ iff there exists an $x \in \mathcal{U}$ such that $\mathbf{P}(x)$ is false iff $(\exists x)[\sim \mathbf{P}(x)]$ is true.
- (b.) The sentence $\sim (\exists x)[\mathbf{P}(x)]$ is true iff $(\exists x)[\mathbf{P}(x)]$ is false iff the truth set of $\mathbf{P}(x)$ is empty iff $(\forall x)[\sim \mathbf{P}(x)]$ is true.

Remark 1.3.1

Let $\mathbf{P}(x)$ be an open sentence with a variable $x \in \mathcal{U}$ for some \mathcal{U} . Then,

$$(\exists!x)\mathbf{P}(x) \equiv (\exists x)[\mathbf{P}(x) \land (\forall y)[\mathbf{P}(y) \Rightarrow x = y]].$$

Example 1.3.3

Find a denial (or the negation) for " $(\forall x)[\mathbf{P}(x) \Rightarrow \mathbf{Q}(x)]$ ".

Solution:

Using Theorem 1.3.1 and Theorem 1.2.2 (part e), we conclude

$$\sim (\forall x)[\mathbf{P}(x) \Rightarrow \mathbf{Q}(x)] \equiv (\exists x)[\sim (\mathbf{P}(x) \Rightarrow \mathbf{Q}(x))] \equiv (\exists x)[\mathbf{P}(x) \land (\sim \mathbf{Q}(x))].$$

Example 1.3.4

Find a denial (or the negation) for " $(\exists!x)\mathbf{P}(x)$ ".

Solution:

1.3. Quantifiers

Using Remark 1.3.1 and Theorem 1.2.2, we conclude

$$\sim (\exists! x) \mathbf{P}(x) \equiv \sim (\exists x) \Big[\mathbf{P}(x) \wedge (\forall y) [\mathbf{P}(y) \Rightarrow x = y] \Big]$$

$$\equiv (\forall x) \Big[\sim \Big(\mathbf{P}(x) \wedge (\forall y) [\mathbf{P}(y) \Rightarrow x = y] \Big) \Big]$$

$$\equiv (\forall x) \Big[\sim \mathbf{P}(x) \vee \sim (\forall y) [\mathbf{P}(y) \Rightarrow x = y] \Big]$$

$$\equiv (\forall x) \Big[\sim \mathbf{P}(x) \vee (\exists y) \sim [\mathbf{P}(y) \Rightarrow x = y] \Big]$$

$$\equiv (\forall x) \Big[\sim \mathbf{P}(x) \vee (\exists y) [\mathbf{P}(y) \wedge \sim (x = y)] \Big]$$

$$\equiv (\forall x) \Big[\sim \mathbf{P}(x) \vee (\exists y) [\mathbf{P}(y) \wedge x \neq y] \Big]$$

Example 1.3.5

Find a denial (or the negation) for

$$(\forall z)(\exists x)(\exists y) \big[\big((x > z) \land (y > z) \big) \land \sim (\exists w) \big(x + y < w < xz \big) \big]. \tag{1.3.1}$$

Solution:

Using Theorem 1.3.1 and Theorem 1.2.2, we conclude

$$\sim \text{Equation}(1.3.5) \quad \equiv \quad \sim (\forall z)(\exists x)(\exists y) \Big[\Big((x > z) \wedge (y > z) \Big) \wedge \sim (\exists w) \Big(x + y < w < xz \Big) \Big]$$

$$\equiv \quad (\exists z)(\forall x)(\forall y) \sim \Big[\Big((x > z) \wedge (y > z) \Big) \wedge \sim (\exists w) \Big(x + y < w < xz \Big) \Big]$$

$$\equiv \quad (\exists z)(\forall x)(\forall y) \Big[\Big((x > z) \wedge (y > z) \Big) \Rightarrow \sim \sim (\exists w) \Big(x + y < w < xz \Big) \Big]$$

$$\equiv \quad (\exists z)(\forall x)(\forall y) \Big[\Big((x > z) \wedge (y > z) \Big) \Rightarrow (\exists w) \Big(x + y < w < xz \Big) \Big].$$

Example 1.3.6

Let $\mathcal{U} = \mathbb{R}$. Decide the truth value and the truth set for each of the following.

Solution:

sentence	${f T}$ or ${f F}$	\mathcal{T}
a. $(\forall y)(\exists x)[x+y=0]$	${f T}$	for any y , $x = -y$ is a solution.
b. $(\exists x)(\forall y)[x+y=0]$	${f F}$	given $x = 0$ not all $y \in \mathbb{R}$ is a solution.
c. $(\exists x)(\exists y)[x^2 + y^2 = 10]$	${f T}$	for $x \in \mathbb{R}$ there is $y = \sqrt{10 - x^2} \in \mathbb{R}$.
d. $(\forall y)(\exists x)(\forall z)[xy = xz]$	${f T}$	for any $y \in \mathbb{R}$, $x = 0$ for any $z \in \mathbb{R}$.
e. $(\forall y)(\exists!x)[x=y^2]$	${f T}$	for any $y \in \mathbb{R}$, $x = y^2$ is a solution.

Section 1.4: Mathematical Proofs

Definition 1.4.1

A **proof** is a justification of the truth of a given statement called theorem, proposition, claim, or lemma.

Remark 1.4.1

Tools of proofs: We may use any of the following:

- Axioms: Initial statements which are assumed to be true.
- Theorems: Some previously proved statement can be use.
- Assumptions: Assumed fact about the problem at hand.
- Tautologies: Examples follow:

a.
$$\mathbf{P} \lor (\sim \mathbf{P})$$
 (Excluded Middle).
b. $(\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\sim \mathbf{Q} \Rightarrow \sim \mathbf{P})$ (Contrapositive).
c. $\mathbf{P} \lor (\mathbf{Q} \lor \mathbf{R}) \Leftrightarrow (\mathbf{P} \lor \mathbf{Q}) \lor \mathbf{R}$ $\mathbf{P} \land (\mathbf{Q} \land \mathbf{R}) \Leftrightarrow (\mathbf{P} \land \mathbf{Q}) \land \mathbf{R}$ (Associativity).
d. $\mathbf{P} \land (\mathbf{Q} \lor \mathbf{R}) \Leftrightarrow (\mathbf{P} \land \mathbf{Q}) \lor (\mathbf{P} \land \mathbf{R})$ $\mathbf{P} \lor (\mathbf{Q} \land \mathbf{R}) \Leftrightarrow (\mathbf{P} \lor \mathbf{Q}) \land (\mathbf{P} \lor \mathbf{R})$ (Distributivity).
e. $(\mathbf{P} \Leftrightarrow \mathbf{Q}) \Leftrightarrow [(\mathbf{P} \Rightarrow \mathbf{Q}) \land (\mathbf{Q} \Rightarrow \mathbf{P})]$ (Biconditional).
f. $\sim (\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\mathbf{P} \land \sim \mathbf{Q})$ (Denial of Implication).
g. $\sim (\mathbf{P} \land \mathbf{Q}) \Leftrightarrow (\sim \mathbf{P} \lor \sim \mathbf{Q})$ (De Morgan's Laws).
 $\sim (\mathbf{P} \lor \mathbf{Q}) \Leftrightarrow (\sim \mathbf{P} \land \sim \mathbf{Q})$ (Contradiction).
i. $[(\mathbf{P} \Rightarrow \mathbf{Q}) \land (\mathbf{Q} \Rightarrow \mathbf{R})] \Leftrightarrow (\mathbf{P} \Rightarrow \mathbf{R})$ (Cransitivity).

In what follows, we consdier different types of proof.

1.4.1 Type 1: Direct Proof

Direct proof $\mathbf{P} \Rightarrow \mathbf{Q}$: Assume \mathbf{P} , then \cdots Therefore, \mathbf{Q} .

Example 1.4.1

Let n be an integer. Show that if n is odd, then n+1 is even.

Solution:

Assume that n = 2k + 1 for some integer k. Then, n + 1 = (2k + 1) + 1. That is n + 1 = 2k + 2 = 2(k + 1). Therefore, n + 1 is even.

Example 1.4.2

Assume that $\sin(x)$ is an odd funtion, i.e. $\sin(-x) = -\sin(x)$. Show that $f(x) = \sin^2(x)$ for any $x \in \mathbb{R}$ is an even function, i.e. f(-x) = f(x).

Solution:

 $f(-x) = (\sin(-x))^2 = (-\sin(x))^2 = \sin(x) = f(x)$. Therefore, f(x) is an even function.

Theorem 1.4.1

Suppose that a, b, and c are integers. If a divides b and b divides c, then a divides c.

Proof:

Since a divides b ($a \mid b$), then there is an integer k such that b = ka. Also, since $b \mid c$ there is an integer h such that c = hb. Thus, c = hb = h(ka) = (hk)a, and therefore $a \mid c$.

Theorem 1.4.2

Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid b \pm c$.

Proof:

Since $a \mid b, \exists k \in \mathbb{Z}$ such that b = ka, and since $a \mid c, \exists h \in \mathbb{Z}$ such that c = ha. Thus,

$$b \pm c = ka \pm ha = (k \pm h)a$$
.

Therefore, $a \mid b \pm c$.

1.4.2 Type 2: Proof By Contradiction

Contradiction to proof **P**: Suppose \sim **P**, then \cdots . Thus **Q**. Then, \cdots . Therefore, \sim **Q**, contradiction.

This technique uses the tautology $\mathbf{P} \Leftrightarrow [\sim \mathbf{P} \Rightarrow (\mathbf{Q} \land \sim \mathbf{Q})].$

Example 1.4.3

The equation $x^3 + x - 1 = 0$ has at most one real root.

Solution:

Let $f(x) = x^3 + x - 1$. Suppose that f(x) has two real roots a and b, then f(a) = f(b) = 0. f is continuouse on [a, b] and is differentiable on (a, b) since it is a polynomial. Then, by Rolle's Theorem, there is a $c \in (a, b)$ such that f'(c) = 0. But $f'(c) = 3c^2 + 1 \neq 0$ for all $c \in \mathbb{R}$. This is a contradiction. Therefore, f has at most one real root.

Remark 1.4.2

- $\bullet\,$ Any square integer has an even number of 2's as prime factors.
- All natural number greater than 1 has a prime divisor q > 1.

Example 1.4.4

Prove that $\sqrt{2}$ is an irrational number.

Solution:

Recall the fact that any square integer number has an even number of 2's as prime factors. Suppose that $\sqrt{2}$ is rational number. Then, $\sqrt{2} = \frac{p}{q}$ for some $p, q \in \mathbb{Z}$. Thus, $2 = \frac{p^2}{q^2}$ or $p^2 = 2q^2$. Since p^2 and q^2 are both square numbers, p^2 contains an even number of 2's as prime factors (might be 0 times for odd numbers) and q^2 contains an even number of 2's as prime factors. But then $2q^2$ has an odd number of 2's as prime factors and thus p^2 has an odd number of 2's as prime factors because $p^2 = 2q^2$. This is a contradiction. Thus, $\sqrt{2}$ is an irrational number.