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Theorem 1.4.3

The set of primes in N is infinite.

Suppose that the set of primes W = {pi,p2, -+ ,pr} is finite for some k£ € N. Let n =
mp2---pr+ 1 € N. (fact) All natural number has a prime divisor ¢ > 1. So, ¢ | n, and since
q is a prime, then ¢ € W and q | p1ps - - - pr (because g = p; for some 1 < i < k). Also, ¢ | n.
Therefore, g | (n — p1p2 -+ - pr), but n — pyps -+ - pr. = 1. Thus ¢ = 1, Contradition. Thus W is

infinite.

1.4.3 Type 3: Contrapositive Proofs

Contraposition to show P = Q: Suppose ~ Q, then ------ . Thus ~ P.
Therefore, P = Q. This technique uses the tautology (P = Q) & (~ Q =~ P).

Example 1.4.5

Let m € Z. If m? is odd, then m is odd.

Solution:

Assume that m is even. Then m = 2k for some k € Z and m? = 4k* = 2(2k?) which is even.

By contraposition, the result is proved.

Example 1.4.6

Let z,y € R such that z < 2y. Show that if Tzy < 322 + 292, then 3z < y.

Solution:

Assume that z < 2y. By contraposition, assume that 3z > y. Then, 2y—z > 0 and 3z—y > 0,
but
2y—2)Bzx—y) =Ty —32* -2 >0 = Tzy> 3z*+ 2°

Therefore, if 7Tzy < 322 + 2y?, then 3z < y.
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1.4.4 Type 4: Two-Directions Proofs

Two directions to show P < Q: By any method, (i) Show that P = Q. (7i) Show that
Q = P. Therefore, P & Q.

v

Theorem 1.4.4

Let a be a prime number, and let b and ¢ be positive integers. Prove that a | bc if and only if

al|bora|ec.

We show the result by two direction: » = 7 and » < .

» = 7. Assume that a | be. By Fundamental Theorem of Arithmetic, b and ¢ can be written
uniquely as products of primes. Assume b = ppy---pr and ¢ = ¢1¢ - - - g, for some h, k € N.
But then be = p1ps - - - prq1qa - - - g Since a | be and a is a prime, a is one of the prime factors.
If a = p; for some 1 < i < k, then a | b or if a = ¢; for some 1 < i < h, then a | ¢. Thus,
either a | b or a | c.

» <= 7. Assume that a | b or a | ¢. Thus,

Case 1: a | b then b = ka for some k € Z and hence bc = (ka)c = (kc)a. Thus a | be.

Case 2: a | ¢ then ¢ = ha for some h € Z and hence bec = b(ha) = (bh)a. Thus a | be.

In either cases, a | be.

1.4.5 Type 5: Proofs By Cases (Exhaustion)

Contradiction to show (P, V Py) = Q: By any method, (i) Show that P, = Q and (ii) show
that Py = Q. Using the tautology [(P; VP3) = Q] < [(P; = Q) A (P2 = Q).

Example 1.4.7

Show that for any z,y € Z, if either x or y is even, then zy is even.

Solution:

We have two cases:
Case 1: Assume z-even. Then z = 2k for some k € Z. That is xy = 2(ky) which is even.

Case 2: Assume y-even. Then y = 2h for some h € Z. That is zy = 2(xh) which is even.
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Thus, in both cases, zy is even.

Example 1.4.8

Let x,y € Z. If x and y are both odd, then xy is odd.

Solution:

a. Direct Proof: Assume x and y are odd integers. Then, there are m and n in Z such

that t =2m+1and y =2n+1. Thus, zy = 2m+1)2n+1) =dmn+2m+2n+1 =
2(2mn +m + n) + 1. Therefore, xy is odd as well.

bl. Proof by Contradiction: Assume that zy is even. Thus 2 | zy which implies that 2 | x

or 2 | y (since 2 is a prime number) which is a contradiction both ways since both of
and y are odd.

b2. Another Proof by Contradiction: Assume that zy is even. Since z and y are odd, there

are m and n in Z such that x =2m+1 and y = 2n+ 1. Thus, zy = 2m+1)(2n+1) =
dmn +2m +2n+ 1 = 2(2mn + m + n) + 1 which is odd, contradiction. Therefore, zy
is odd.

c. Proof by Contraposition: We use ~ (zy is odd) =~ (x is odd and y is odd) which is

equivalent to (zy is even) = [(z is even) or (y is even)].
Assume that xy is even. Thus, 2 | zy. Since 2 is a prime number, we have either 2 |

or 2 | y. Thus, either x is even or y is even. Therefore, if z and y are odd, then zy is

odd.

Exercise 1.4.1

Let a,b € Z. Use a contrapositive proof to show that if ab-odd, then a - odd and b-odd.
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Section 1.6: Proofs Involving Quantifiers

1.6.1 Type 1: Proof of (dz)P(z)

e Direct proof: Name or construct an element x € & which has the property P(z).

e Proof by contradiction: Suppose ~ (dz)P(z). Then (Vz)(~ P(z)) ... ... ... .Therefore,
Q(z)A ~ Q(z), contradiction. Hence, ~ (Jz)P(z) is false, then (Jz)P(z) is true.

Example 1.6.1

Show that there is an even prime number.

Solution:

2 is a prime even number.

Example 1.6.2

Let U = R. Show that (3z)[z* + 3z + 2 — 1 =10].

Solution:

Using direct proof: x = —1 is a solution. On the other hand, using a proof by contradiction:
Assume ~ (3z)[z? + 32° + z — 1 = 0] = (Vz)[z* + 32* + = — 1 # 0]. Therefore, either:

Case 1: (Vz)[z* + 32* + x — 1 > 0] which is false for if z = —10, or

Case 2: (Vz)[z? + 3z* + x — 1 < 0] which is false for if z = 10.

Therefore, (3z)[z° + 3z* + 2 — 1 =0).

1.6.2 Type 2: Proof of (Vz)P(x)

e Direct proof: Let x € U be arbitrary, then ... .... Hence, P(z) is true. Since z was arbitrary
chosen, (Vz)P(x) is true.

e Proof by contradiction: Suppose ~ (Vz)P(z). Then (Jz)(~ P(x)) ... ... ... Therefore,
Q(z)A ~ Q(z), contradiction. Hence, ~ (Vz)P(z) is false, then (Vz)P(z) is true.
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Example 1.6.3

Let U = Z. Show that (Vz), if z is even, then x* is even.

Solution:

Assume that z € Z so that = 2k for some integer k. Then z2 = (2k)* = 2(2k?) which is

evell.

Example 1.6.4

PT4q
2

is rational.

Show that for all rational numbers p and g,

Solution:

€T

Assume that p = 7 and ¢ = where z,y,u,v € Z with y,v # 0. Then,

Y
p+q 1 :1:+u 1fzv+tyu) zv+yu
2 2\y v/ 2 Y - 2y

b/

which is rational.

1.6.3 Type 3: Proof of (3lz)P(z)

1. Prove that (3z)P(x) by any method.

(Fz)P(x).

2. Assume that z,y € U such that P(z) and P(y) are true ... ... . Thus, x = y. Therefore,

Example 1.6.5

Prove that every nonzero real number has a unique multiplicative inverse.

Solution:

Let z be any nonzero real number. We want to show that zy = 1 for exactly one real number
y. Let y = i, then y is a real number. Since x # 0, then zy = :v% = 1. Thus, = has a
multiplicative inverse.

Assume that y and z are two real numbers such that xy = zz = 1. Since z # 0, zy = z=2

implies that y = z. Therefore, every nonzero real number has a unique multiplicative inverse.
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Prove that every nonsingular matrix has a unique inverse.




