2

Set Theory

Section 2.1: Basic Notations of Set Theory

Definition 2.1.1

A set is a collection of objects called elements. Sets are usually denoted by capital letters A, B, C, \cdots while elements are usually denoted by small letters a, b, c, \cdots .

- If a is an element of a set A, then we write $a \in A$. Otherwise, we write $a \notin A$.
- The empty set $\phi := \{x : x \neq x\}$. That is, ϕ is a set with no elements.
- A set B is a **subset** of A, denoted by $B \subseteq A$, if and only if every elements of B is also an element of A. That is, $\forall b \in B \Rightarrow b \in A$.
- A set B is called a **proper subset** of set A, if $B \subseteq A$ and $B \neq \phi$, but $B \neq A$. In this case, we write $B \subset A$.
- Two subsets A and B are equal , denoted by A=B, if and only of $A\subseteq B$ and $B\subseteq A$.
- If a set A contains n elements, we say that |A| = n.

Theorem 2.1.1

For any sets A, B, and C, we have:

- 1) $\phi \subseteq A$,
- 2) $A \subseteq A$, and
- 3) if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof:

The first two results are trivial so we leave those. For part 3) let a be any element of A. Since $A \subseteq B$, $a \in B$. But since $B \subseteq C$, $a \in C$. Thus, if $a \in A \Rightarrow a \in C$. Thus, $A \subseteq C$.

Definition 2.1.2

Let A be a set. The **power set** of A is the set whose elements are all the subsets of A and is denoted by $\mathcal{P}(A)$. Thus,

$$\mathcal{P}(A) = \{B : B \subseteq A\}.$$

Example 2.1.1

Let $A = \{a, b, c\}$. Find $\mathcal{P}(A)$.

Solution:

$$\mathcal{P}(A) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}.$$

Remark 2.1.1

Let A be any given set. Then,

- a. Theorem: If |A| = n, then $|\mathcal{P}(A)| = 2^n$.
- b. $A \not\subseteq \mathcal{P}(A)$, but $A \in \mathcal{P}(A)$.

Example 2.1.2

Let $A = \{1, \{1, 3\}, \{2, 3\}\}$. Find $\mathcal{P}(A)$.

Solution:

$$\mathcal{P}(A) = \{ \phi, \{1\}, \{ \{1,3\} \}, \{ \{2,3\} \}, \{ 1, \{1,3\} \}, \{ 1, \{2,3\} \}, \{ \{1,3\}, \{2,3\} \}, A \}.$$

Note that, $1 \in A$, while $2 \notin A$ and $3 \notin A$. Also, $\{1\} \notin A$ where $\{2,3\} \in A$ and $\{\{2,3\}\} \subseteq A$ hence $\{\{2,3\}\} \in \mathcal{P}(A)$. Moreover, $1 \notin \mathcal{P}(A)$, $\{1\} \in \mathcal{P}(A)$, and $\{\{1\}\} \subseteq \mathcal{P}(A)$. Also, $\phi \subseteq A$, $\phi \in \mathcal{P}(A)$ and $\{\phi\} \subseteq \mathcal{P}(A)$. Finally, $\{1,3\} \notin \mathcal{P}(A)$, but $\{\{1,3\}\} \in \mathcal{P}(A)$.

Theorem 2.1.2

Let A and B be two sets. Then, $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Proof:

- " \Rightarrow ": Assume that $A \subseteq B$. Let $X \in \mathcal{P}(A)$. Then, $X \subseteq A \subseteq B$. That is, $X \in \mathcal{P}(B)$. Thus, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- " \Leftarrow ": Assume that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Since $A \in \mathcal{P}(A) \subseteq \mathcal{P}(B)$, we have $A \in \mathcal{P}(B) \Rightarrow A \subseteq B$.

Exercise 2.1.1

Let $A = \{ 9^n : n \in \mathbb{Z} \}$ and $B = \{ 3^n : n \in \mathbb{Z} \}$. Show that $A \subsetneq B$.

Exercise 2.1.2

Let $A = \{ 9^n : n \in \mathbb{Q} \}$ and $B = \{ 3^n : n \in \mathbb{Q} \}$. Show that A = B.

Exercise 2.1.3

Find $\mathcal{P}(\phi)$, $\mathcal{P}(\mathcal{P}(\phi))$, and $\mathcal{P}(\mathcal{P}(\mathcal{P}(\phi)))$.

Section 2.2: Set Operations

Definition 2.2.1

Let A and B be two sets. Then,

Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

What is the meaning of $x \notin A \cup B$?

intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$. What is the meaning of $x \notin A \cap B$?

3. Difference: $A - B = \{x : x \in A \text{ and } x \notin B\}$. What is the meaning of $x \notin A - B$?

4. Complement: If
$$\mathcal{U}$$
 is the universal, then $\widetilde{A} = \{x : x \notin A\} = \{x : x \in \mathcal{U} - A\}.$

5. **Disjoint**: A and B are called **disjoint** if $A \cap B = \phi$.

Theorem 2.2.1

Let A, B, and C be sets. Then,

- 1. $A \subseteq A \cup B$.
- $2. \ A\cap B\subseteq A.$
- 3. $A \cap \phi = \phi$.
- $4. \ A \cup \phi = A.$

- 5. $A \cap A = A$.
- 6. $A \cup A = A$.
- 7. $A \cup B = B \cup A$.
- 8. $A \cap B = B \cap A$.
- 9. $A \phi = A$.
- 10. $\phi A = \phi$.
- 11. $A \cup (B \cup C) = (A \cup B) \cup C$.
- 12. $A \cap (B \cap C) = (A \cap B) \cap C$.
- 13. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 14. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 15. $A \subseteq B$ if and only if $A \cup B = B$.
- 16. $A \subseteq B$ if and only if $A \cap B = A$.
- 17. if $A \subseteq B$, then $A \cup C \subseteq B \cup C$.
- 18. if $A \subseteq B$, then $A \cap C \subseteq B \cap C$.

Proof:

Proof of (13): Using the fact " $\mathbf{P} \wedge (\mathbf{Q} \vee \mathbf{R}) = (\mathbf{P} \wedge \mathbf{Q}) \vee (\mathbf{P} \wedge \mathbf{R})$ " as follows.

```
x \in A \cap (B \cup C) \quad \text{iff} \quad x \in A \text{ and } x \in B \cup C \text{iff} \quad x \in A \text{ and } (x \in B \text{ or } x \in C) \text{iff} \quad (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C) \text{iff} \quad x \in A \cap B \text{ or } x \in A \cap C
```

 $x \in (A \cap B) \cup (A \cap C)$.

Proof of (15): " \Rightarrow ": Assume that $A \subseteq B$. By part (1), $B \subseteq A \cup B$ so we only show that $A \cup B \subseteq B$. Let $x \in A \cup B$, then $x \in A \subseteq B$ or $x \in B$. In both cases, $x \in B$. Thus, $A \cup B \subseteq B$. Therefore, $B = A \cup B$.

" \Leftarrow ": Assume that $A \cup B = B$. By part (1) $A \subseteq A \cup B = B$. Thus, $A \subseteq B$.

iff

Proof of (18): Assume that $A \subseteq B$. Let $x \in A \cap C$, then $x \in A \subseteq B$ and $x \in C$. Thus, $x \in B$ and $x \in C$, which implies that $x \in B \cap C$. Therefore, $A \cap C \subseteq B \cap C$.

Theorem 2.2.2

Let A and B be two subsets of the universe \mathcal{U} . Then:

- 1. $\widetilde{\widetilde{A}} = A$.
- 2. $A \cup \widetilde{A} = \mathcal{U}$.
- 3. $A \cap \widetilde{A} = \phi$.
- 4. $A B = A \cap \widetilde{B}$.
- 5. $A \subseteq B$ iff $\widetilde{B} \subseteq \widetilde{A}$.
- 6. $A \cap B = \phi$ iff $A \subseteq \widetilde{B}$.

Proof:

Proof of (2): If $x \in A \cup \widetilde{A}$ then $x \in A \subseteq \mathcal{U}$ or $x \in \widetilde{A} = \mathcal{U} - A$. In either cases, $x \in \mathcal{U}$. Thus, $A \cup \widetilde{A} \subseteq \mathcal{U}$.

Assume now that $x \in \mathcal{U}$. Thus, $x \in A$ or $x \in \mathcal{U} - A = \widetilde{A}$ which implies $x \in A \cup \widetilde{A}$. Thus $\mathcal{U} \subseteq A \cup \widetilde{A}$. Therefore, $\mathcal{U} = A \cup \widetilde{A}$.

Proof of (5): Using a contrapositive proof as follows:

$$A \subseteq B$$
 iff $(\forall x)(x \in A \Rightarrow x \in B)$
iff $(\forall x)(x \notin B \Rightarrow x \notin A)$
iff $(\forall x)(x \in \widetilde{B} \Rightarrow x \in \widetilde{A})$
iff $\widetilde{B} \subseteq \widetilde{A}$.

Proof of (7.b): Recall that $\sim (\mathbf{P} \wedge \mathbf{Q}) = \sim \mathbf{P} \vee \sim \mathbf{Q}$:

$$x \in \widetilde{A \cap B} \qquad \text{iff} \qquad x \not \in A \cap B$$

$$\text{iff} \qquad \sim (x \in A \text{ and } x \in B)$$

$$\text{iff} \qquad x \not \in A \text{ or } x \not \in B$$

$$\text{iff} \qquad x \in \widetilde{A} \text{ or } x \in \widetilde{B}$$

$$\text{iff} \qquad x \in \widetilde{A} \cup \widetilde{B}.$$

Example 2.2.1

Let $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8\}$ be the universe and let $A = \{1, 5, 7\}$, $B = \{2, 5, 8\}$, and $C = \{3, 4, 5, 6, 7\}$ Answer Each of the following:

- 1. $A \cap B = \{5\}.$
- 2. $B \cup C = \{2, 3, 4, 5, 6, 7, 8\}.$
- 3. $(A \cap B) \cup (A \cap C) = \{5\} \cup \{5,7\} = \{5,7\}.$
- 4. $A C = \{1\}.$
- 5. $(A \cup C) (B \cap C) = \{1, 3, 4, 5, 6, 7\} \{5\} = \{1, 3, 4, 6, 7\}.$
- 6. $\widetilde{A} = \mathcal{U} A = \{2, 3, 4, 6, 8\}.$
- 7. $\widetilde{A} \cap \widetilde{B} = \{2, 3, 4, 6, 8\} \cap \{1, 3, 4, 6, 7\} = \{3, 4, 6\}.$

Example 2.2.2

Let $A \subseteq B \cup C$ and $A \cap B = \phi$. Show that $A \subseteq C$.

Solution:

Let $x \in A$. Since $A \subseteq B \cup C$, $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$, contradiction. Thus, $x \in C$ and therefore, $A \subseteq C$.

Example 2.2.3

Show that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Solution:

Let
$$X \in \mathcal{P}(A \cap B)$$
 iff $X \subseteq A \cap B$
iff $X \subseteq A$ and $X \subseteq B$
iff $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$
iff $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

Example 2.2.4

Show that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. Is $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ in general? Explain.

Solution:

Let
$$X \in \mathcal{P}(A) \cup \mathcal{P}(B)$$
 \Rightarrow $X \in \mathcal{P}(A)$ or $X \in \mathcal{P}(B)$
 \Rightarrow $X \subseteq A$ or $X \subseteq B$
 \Rightarrow $X \subseteq A \cup B$
 \Rightarrow $X \in \mathcal{P}(A \cup B)$.

In general, $\mathcal{P}(A \cup B) \not\subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$ and thus $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$.

For instance, consider $A = \{a\}$ and $B = \{b\}$. Then $A \cup B = \{a,b\}$, $\mathcal{P}(A) = \{\phi,\{a\}\}$ and $\mathcal{P}(B) = \{\phi,\{b\}\}$. Therefore,

$$\mathcal{P}(A \cup B) = \{\phi, \{a\}, \{b\}, \{a, b\}\} \neq \mathcal{P}(A) \cup \mathcal{P}(B) = \{\phi, \{a\}, \{b\}\}.$$

Remark 2.2.1

If $A \subseteq B$, then $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$.

Exercise 2.2.1

Suppose that A, B, and C are three nonempty sets. Show that if $A \subseteq B$, then $A - C \subseteq B - C$.

Exercise 2.2.2

Suppose that A, and B are two nonempty sets. Show that $A - B = \phi$ iff $A \cap B = A$.