Section 2.4: Proof by Induction

Definition 2.4.1: Principle of Mathematical Induction (PMI)

If S is a subset of \mathbb{N} so that:

- 1. $1 \in S$, and
- 2. for all $n \in \mathbb{N}$, if $n \in S$, then $n + 1 \in S$,

then $S = \mathbb{N}$.

2.4.1 Proof of $(\forall n \in \mathbb{N})\mathbf{P}(n)$ using PMI

- Basic Step: Show that P(1) is true.
- Induction Step: Show that for all $n \in \mathbb{N}$, if $\mathbf{P}(n)$ is true, then $\mathbf{P}(n+1)$ is true.
- Conclusion: By step 1 and step 2 and using the PMI, $\mathbf{P}(n)$ is true for all $n \in \mathbb{N}$.

Example 2.4.1

Show that for all $n \in \mathbb{N}$,

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Solution:

For n=1, clearly $1=\frac{1(1+1)}{2}$ is true. Assume that for some $n\in\mathbb{N}$, we have

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Now, we want to show that $1 + 2 + 3 + \cdots + n + (n+1) = \frac{(n+1)(n+2)}{2}$.

$$\frac{1+2+3+\cdots+n}{1+2+3+\cdots+n} + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{n(n+1)+2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}.$$

Example 2.4.2

Show that for all $n \in \mathbb{N}$, $\sum_{i=1}^{n} (2i-1) = n^2$.

Solution:

For n = 1, $2(1) - 1 = 1 = 1^2$, which is true. Assume that for some $n \in \mathbb{N}$, we have $\sum_{i=1}^{n} (2i-1) = n^2$. We want to show that $\sum_{i=1}^{n+1} (2i-1) = (n+1)^2$. Thus,

$$\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + 2(n+1) - 1 = n^2 + 2n + 1 = (n+1)^2.$$

Example 2.4.3

Show that for all $n \in \mathbb{N}$, $n+3 < 5n^2$.

Solution:

For n = 1 we have 1 + 3 = 4 < 5 which is true. So, assume that for n, $n + 3 < 5n^2$ is true. For n + 1, we want to show that $(n + 1) + 3 < 5(n + 1)^2 = 5n^2 + 10n + 5$. Then,

$$(n+1)+3=(n+3)+1<5n^2+1<5n^2+(10n+4)+1=5(n+1)^2.$$

Therefore, for all $n \in \mathbb{N}$, $n+3 < 5n^2$.

Definition 2.4.2

For $n \in \mathbb{N}$, define 0! = 1 and $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$. Then, the **bionomial** coefficient "n choose k", where $0 \le k \le n$, is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)(n-3)\cdots(n-k+2)(n-k+1)}{k!}.$$

Moreover, the **bionomial expansion** of any $a, b \in \mathbb{R}$ is given by

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Remark 2.4.1: Pascal's Triangle

Let $a, b \in \mathbb{R}$. Then, the coefficients of the bionomial expansion $(a + b)^n$ can be computed by the Pascal's Triangle for each n.

Example 2.4.4

Show that for all $n \in \mathbb{N}$, $\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15}$ is an integer.

Solution:

$$\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15} = \frac{5n^3 + 3n^5 + 7n}{15} \text{ is an integer iff } 15 \mid 5n^3 + 3n^5 + 7n \text{ iff } \exists k \in \mathbb{N} \text{ such that } 5n^3 + 3n^5 + 7n = 15k.$$

For n=1, we have 5+3+7=15 which is true. So assume that there $k \in \mathbb{N}$ such that $5n^3+3n^5+7n=15k$. Then, we want to show that

$$5(n+1)^3 + 3(n+1)^5 + 7(n+1) = 15h$$
(2.4.1)

for some $h \in \mathbb{N}$. Thus, using the Pascal's Triangle we get

Eqn.(2.4.1) =
$$5(n^3 + 3n^2 + 3n + 1) + 3(n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1) + 7n + 7$$

= $\underbrace{(5n^3 + 3n^5 + 7n)}_{=15k} + \underbrace{(15)n^2 + (15)n}_{=15k} + 5 + \underbrace{(15)n^4}_{=15k}$
+ $\underbrace{(30)n^3 + (30)n^2 + (15)n + 3 + 7}_{=15k + 15[n^2 + n + n^4 + 2n^3 + 2n^2 + n + 1]}$

Thus $15 \mid 5(n+1)^3 + 3(n+1)^5 + 7(n+1)$ and $\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15}$ is an integer for all $n \in \mathbb{N}$.

Example 2.4.5

Express the terms of $(2x - 4yz^2)^5$ for $x, y, z \in \mathbb{R}$.

Solution:

Let a=2x, $b=-4yz^2$, and n=5. Using the bionomial expansion form, we get

$$(2x - 4yz^2)^5 = (2x)^5 + 5(2x)^4(-4yz^2) + 10(2x)^3(-4yz^2)^2 + 10(2x)^2(-4yz^2)^3$$

$$+ 5(2x)(-4yz^2)^4 + (-4yz^2)^5.$$

Definition 2.4.3: Generalized Principle of Mathematical Induction (GPMI)

Let k be a natural number. If S is a subset of $\mathbb N$ so that:

- 1. $k \in S$, and
- 2. for all $n \in \mathbb{N}$ with $n \geq k$, if $n \in S$, then $n + 1 \in S$,

then S contains all natural number greater than or equal to k.

Example 2.4.6

Show that for all $n \ge 5$, $n^2 - n - 20 \ge 0$.

Solution:

For n=5, we have $25-5-20=0\geq 0$ which is true. Assume that for some $n\geq 5$, $n^2-n-20\geq 0$ is true. For n+1, we have

$$(n+1)^2 - (n+1) - 20 = n^2 + 2n + 1 - n - 1 - 20 = (n^2 - n - 20) + \underbrace{2n}_{\text{positive}} \ge 0.$$

Thus, $n^2 - n - 20 \ge 0$ for all $n \ge 5$.

Example 2.4.7

Let $n \in \mathbb{N}$. Show that $(n+1)! > 2^{n+3}$ for all $n \geq 5$.

Solution:

For n=5, we have $6!=720\geq 2^8=256$ which is true. Assume that for some $n\geq 5$, $(n+1)!>2^{n+3}$ is true.

For n+1, we want to show that $(n+2)! > 2^{n+4}$ for all $n+1 \ge 5$. Since n+2 > 2 for all $n \ge 4$, we get

$$(n+2)! = (n+2)(n+1)! > (n+2)2^{n+3} > 2 \cdot 2^{n+3} = 2^{n+4}.$$

Thus, $(n+1)! > 2^{n+3}$ for all $n \ge 5$.