Chapter 3

3

Relations

Section 3.1: Cartesian Products and Relations

Definition 3.1.1

Let A and B be two sets. An **ordered pair** is $(a,b) \neq \{a,b\}$ for $a \in A$ and $b \in B$. We say that (a,b) = (c,d) if and only if a = c and b = d.

Definition 3.1.2

Let A and B be two sets. The (Cartesian or cross) product of A and B, denoted by $A \times B$, is defined by

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

Moreover, if $(a, b) \in A \times B$, then $a \in A$ and $b \in B$. If $(a, b) \notin A \times B$, then either $a \notin A$ or $b \notin B$.

Remark 3.1.1

Let A and B be two given sets. Then,

- 1. if A has m elements and B has n elements, then $A \times B$ has mn elements.
- 2. In general, $A \times B \neq B \times A$.

Example 3.1.1

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Find $A \times B$ and $B \times A$.

Solution:

Note that, in general $A \times B \neq B \times A$ as this example shows.

$$A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}, \text{ and }$$

$$B\times A \quad = \quad \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$$

Example 3.1.2

Let A = [0, 1] and $B = \{1\} \cup [2, 3)$. Find $A \times B$.

Solution:

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

Theorem 3.1.1

If A and B are nonempty set, then $A \times B = B \times A$ iff A = B.

Proof:

" \Rightarrow ": Assume that $A \neq \phi$, $B \neq \phi$ and $A \times B = B \times A$. Let $a \in A$, then there is $b \in B$ such that $(a,b) \in A \times B = B \times A$ which implies that $a \in B$ Thus, $A \subseteq B$.

Let $b \in B$, then there is $a \in A$ such that $(b, a) \in B \times A = A \times B$ which implies that $b \in A$. Thus, $B \subseteq A$ and therefore A = B.

" \Leftarrow ": if A = B, then $A \times B = A \times A = B \times A$.

Theorem 3.1.2

Let A, B, C, and D be sets. Then

1.
$$\begin{cases} a. \ A \times (B \cup C) &= (A \times B) \cup (A \times C). \\ b. \ (A \cup B) \times C &= (A \times C) \cup (B \times C). \\ c. \ A \times (B \cap C) &= (A \times B) \cap (A \times C). \\ d. \ (A \cap B) \times C &= (A \times C) \cap (B \times C). \end{cases}$$

2.
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$
.

3.
$$(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$$
.

Proof:

Proof of (1.a):

$$(x,y) \in A \times (B \cup C) \quad \text{iff} \quad x \in A \, \land \, y \in B \cup C$$

$$\text{iff} \quad x \in A \, \land \, (y \in B \lor y \in C)$$

$$\text{iff} \quad (x \in A \land y \in B) \, \lor \, (x \in A \land y \in C)$$

$$\text{iff} \quad ((x,y) \in A \times B) \, \lor \, ((x,y) \in A \times C)$$

$$\text{iff} \quad (x,y) \in (A \times B) \lor (A \times C).$$

Proof of (2):

$$(x,y) \in (A \times B) \cap (C \times D) \quad \text{iff} \quad (x \in A \land y \in B) \land (x \in C \land y \in D)$$

$$\text{iff} \quad (x \in A \land x \in C) \land (y \in B \land y \in D)$$

$$\text{iff} \quad (x \in A \cap C) \land (y \in B \cap D)$$

$$\text{iff} \quad (x,y) \in (A \cap C) \times (B \cap D).$$

Proof of (3): Let $(x,y) \in (A \times B) \cup (C \times D)$, then $(x,y) \in A \times B$ or $(x,y) \in C \times D$.

 $\underline{\mathrm{Case}(i)} \text{: } (x,y) \in A \times B \text{ implies that } x \in A \text{ and } y \in B. \text{ Then, } x \in A \cup C \text{ and } y \in B \cup D.$

Thus, $(x, y) \in (A \cup C) \times (B \cup D)$.

 $\operatorname{Case}(ii)\colon (x,y)\in C\times D \text{ implies that } x\in C \text{ and } y\in D. \text{ Then again } x\in A\cup C \text{ and } y\in B\cup D.$

Thus, $(x, y) \in (A \cup C) \times (B \cup D)$.

Therefore, $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

Remark 3.1.2

Note that $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$: For instance, Let $A = B = \{0\}$, and $C = D = \{1\}$. Then, $(0,1) \in (A \cup C) \times (B \cup D)$ while $(0,1) \not\in (A \times B) \cup (C \times D)$. Therefore, $(A \cup C) \times (B \cup D) \not\subseteq (A \times B) \cup (C \times D)$.

Definition 3.1.3

Let A and B be sets. A **relation** \mathcal{R} from A to B is a subset of $A \times B$. In this case, we write $a\mathcal{R}b$ for $(a,b) \in \mathcal{R}$ and say that "a is related to b". Also, $a\mathcal{R}b$ means that $(a,b) \notin \mathcal{R} \subseteq A \times B$. Moreover, if A = B, then subsets of $A \times A$ are called relations on A.

Definition 3.1.4

If $\mathcal{R} \subseteq A \times B$ is a relation, then the **domain** of \mathcal{R} is $Dom(\mathcal{R}) = \{a \in A : (a, b) \in \mathcal{R}\}$. Moreover, the **range** of \mathcal{R} is $Rng(\mathcal{R}) = \{b \in B : (a, b) \in \mathcal{R}\}$.

Example 3.1.3

Let $A = \{1, 2, \{3\}, 4\}$ and $B = \{a, b, c, d\}$. Find the domain and range of \mathcal{R} , where

$$\mathcal{R} = \{(1, c), (\{3\}, a), (1, d), (2, d)\} \subseteq A \times B.$$

Solution:

The $Dom(\mathcal{R}) = \{1, 2, \{3\}\} \subseteq A$ and the $Rng(\mathcal{R}) = \{a, c, d\} \subseteq B$. Note that $Dom(\mathcal{R}) \neq A$ and $Rng(\mathcal{R}) \neq B$.

Example 3.1.4

Let $A = \{1, 3, 5, 7\}$ and $B = \{2, 6\}$. Let $\mathcal{R} \subseteq A \times B$ defined by $\mathcal{R} = \{(a, b) \in A \times B : a < b\}$. Find \mathcal{R} along with its domain and range.

Solution:

$$\mathcal{R} = \{(1, 2), (1, 6), (3, 6), (5, 6)\}$$

 $\mathrm{Dom}(\mathcal{R}) = \{1, 3, 5\}$
 $\mathrm{Rng}(\mathcal{R}) = \{2, 6\}.$

Example 3.1.5

Let $\mathcal{R} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2 + 3\}$. Find the domain and the range of the relation \mathcal{R} .

Solution:

Domain: $x \in \text{Dom}(\mathcal{R})$ iff $\exists y \in \mathbb{R}$ with $y = x^2 + 3$ which is true for all $x \in \mathbb{R}$. Thus, $\text{Dom}(\mathcal{R}) = \mathbb{R}$. Range: $y \in \text{Rng}(\mathcal{R})$ iff $\exists x \in \mathbb{R}$ with $y = x^2 + 3$ and since $x^2 \geq 0$, we have $y \geq 3$. Therefore, $\text{Rng}(\mathcal{R}) = [3, \infty)$.

Definition 3.1.5

For any set A, the relation \mathcal{I}_A is the **identity relation** on A and is defined by

$$\mathcal{I}_A = \{(a, a) : a \in A\},\$$

with $Dom(\mathcal{I}_A) = A = Rng(\mathcal{I}_A)$.

Definition 3.1.6

For any sets A and B, if $\mathcal{R} \subseteq A \times B$ is a relation, then the **inverse relation** is

$$\mathcal{R}^{-1} = \{(b, a) : (a, b) \in \mathcal{R}\} \subseteq B \times A,$$

with $\mathrm{Dom}(\mathcal{R}^{-1}) = \mathrm{Rng}(\mathcal{R})$ and $\mathrm{Rng}(\mathcal{R}^{-1}) = \mathrm{Dom}(\mathcal{R})$.

Definition 3.1.7

Let $\mathcal{R} \subseteq A \times B$ be a relation and let $\mathcal{S} \subseteq B \times C$ be a relation. The **composition relation** $\mathcal{S} \circ \mathcal{R}$ is defined by

$$S \circ \mathcal{R} = \{(a,c) : (\exists b \in B) \big((a,b) \in \mathcal{R} \text{ and } (b,c) \in S \big) \} \subseteq A \times C.$$

Moreover, $Dom(S \circ R) \subseteq Dom(R)$.

Example 3.1.6

Let
$$A = \{a, b, c\}, B = \{1, 2, 3, 4\}, \text{ and } C = \{x, y, z, w\}.$$
 Let

$$\mathcal{R} = \{(a,1), (b,2), (c,2), (c,3), (c,4)\} \subseteq A \times B$$
, and

$$\mathcal{S} = \{(1, w), (2, x), (2, z), (3, y), (4, y)\} \subseteq B \times C.$$

Find \mathcal{R}^{-1} , and $\mathcal{S} \circ \mathcal{R}$.

Solution:

$$\mathcal{R}^{-1} = \{(1, a), (2, b), (2, c), (3, c), (4, c)\} \subseteq B \times A.$$

$$\mathcal{S} \circ \mathcal{R} = \{(a, w), (b, x), (b, z), (c, x), (c, z), (c, y)\} \subseteq A \times C.$$

Example 3.1.7

Let $\mathcal{R} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x < y\}$. Find \mathcal{R}^{-1} .

Solution:

Note that

$$(x, y) \in \mathcal{R}^{-1}$$
 iff $(y, x) \in \mathcal{R}$ iff $y < x$ iff $x > y$.

That is $\mathcal{R}^{-1} = \{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > y \}.$