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Example 3.1.8

et R={(z,y) eRxR:y=xz—1}andlet S = {(z,y) eRxR:y=2?}. Find SoR
and RoS.

Solution:

SoR={(z,y): (FTz€eR)((z,2) € R and (2,y) € S) }
:{(:c,y):(HzER)(z:x—lalldy:zQ)}
={(@.y): (= eR)(y=(z-1))}

RoS={(z,y):(FzeR)((z,2) € S and (z,y) e R) }

:1:y):(EIzGR)(z:x2andy:z—l)}
T,y :(Ele]R)(y:xl—l)}
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Theorem 3.1.3

Let A, B,C, and D besets. Let RCAXx B, SCBxC,and7T CC x D. Then,
IN(Ra =R
2. To(SoR)=(ToS)oR.

3. (SoR)1=R 108

Proof of part(2): Let a € A and d € D so that

(a,d) e To(SoR) iff (3ceC)[(a,c) €SoR and (c,d) € T]
it (3ce C)[(3be B)((a,b) € R and (b,c) € S) and (c,d) € T
iff (3c€ C)(3be B)[(a,b) € R and (b,c) €S and (c,d) € T
it (3b€ B)[(a,b) € R and (3c € O)((b,¢) € S and (¢,d) € T)]
itt (3b€ B)|(a,b) € R and (b,d) € T o S]
ifft (a,d) € (ToS)oR.
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Proof of part (3): Let a € A and ¢ € C so that

(c,a) € (SoR)™ it (
it (3b€ B)|(a,b) € R and (b,c) € S]
itt (3b€ B)|(b,a) € R and (c,b) € S
(
(

iff (3be B)|(c,b) € S and (b,a) € R
ift

Example 3.1.9

Let A=[2,4] and B = (1,3) U{4}. Let R be the relation on A x R with zRy itft x € A and
let & be the relation on R x B with Sy ift y € B. Find RNS and RUS.

Solution:

By Theorem 3.1.2 part(2), RNS = (AXxR)N(Rx B) = (ANR) x (RNB) = A x B. Therefore,
RNS=AxB={(a,b):a€ Aand b € B}. On the other hand, RUS = {(a,b) e R xR :
a€ Aorbe B}.
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Let A and B be two nonempty sets. Show that if A x B C B x C, then A C C.

Exercise 3.1.2

Let RC Ax Band § C B x C be two relations. Show that Dom(S o R) C Dom(R).
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Section 3.2: Equivalence Relations

Definition 3.2.1

Let A be a set and R be a relation on A. Then R is called an equivalence relation if and

only if:

1. R is reflexive on A: (Vz € A) zRz.
2. R is symmetric on A: (Vz,y € A) if 2Ry, then yRzx.
3. R is transitive on A: (Vz,y,z € A) if 2Ry and yRz, then zRz.

Example 3.2.1

Let A = {1,2,3,4} and Ry, = {(1,2),(2,3),(1,3)}, R, = {(1,1),(1,2)}, Rs = {(3,4)},
Rs=1(1,2),(2,1)}, and R5s = {(1,1),(2,2),(3,3),(4,4)}. Decide which relation is reflexive,

symmetric, transitive.

Solution:

Rs is reflexive. R4, and R5 are symmetric. Ry, R2,R3, and Rs are transitive. Therefore, R5

is an equivalence relation on A.

Example 3.2.2

Let R = {(z,y) : zy > 0} be a relation on Z. Discuss whether R reflexive, symmetric,

transitive, and equivalence relation.

Solution:

Clearly, xRz for all x € Z except for x = 0, thus R is not reflexive. If xRy, then zy > 0 or
yxr > 0 which imples that yRz. Thus, R is symmetric. If xRy and yRz, then xy > 0 and
yz > 0. Considering the cases of y € Z — {0}, we have

1. case 1: y > 0, then x > 0 and 2z > 0 which implies that zz > 0 and thus zRz.

2. case 1: y <0, then x < 0 and z < 0 which implies that xz > 0 and thus zRz.

In either cases, R is transitive on Z. Note that R is not reflexive and thus it is not an

equivalence relation on Z.
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Example 3.2.3

Let R be the relation on Z given by xRy ift x — y is even. Show that R is an equivalence

relation on Z.

Solution:

Reflexive: Since x — z = 0 is even, xRz for all x € Z. Thus, R is reflexive.

Symmetric: Assume that Ry, then there is k € Z such that z —y = 2k. Thus, y—z = 2(—k)

which implies that yRz. Thus, R is symmetric.
Transitive: Let xRy and yRz. Then, there are h, k € Z such that x —y = 2h and y — z = 2k.

Adding these two equations, we get x — z = 2(h + k) which is even. Therefore, Rz and R
1s transitive.

Therefore, R is an equivalence relation on Z.

Definition 3.2.2

Let R be an equivalence relation on a set A. For x € A, define the equivalence class of x

determined by R as
z/R={y € A: xRy},

which reads "the class of £ modulo R” or "z mod R. The set of all equivalence classes is

called A modulo R and is defined by

A/R={z/R:z € A}.

Example 3.2.4

Let R ={(1,1),(2,2),(3,3),(1,2),(2,1)} be an equivalence relation on A = {1,2,3}. Find:

e 1/R=1{1,2}.
e 2/R ={1,2}.
e 3/R ={3}.

o A/R ={{1,2},{3}}.
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Example 3.2.5

Let R be a relation on N so that Ry < 2 | z + y. Show that R is an equivalence relation

on N. Calculate all the equivalence classes of R.

Solution:

reflexive: Since z + z = 2z, 2 | z + = and thus zRz. So, R is reflexive.

symmetric: if 2Ry, then 2 | x +y. Thus, 2 | y+ 2 as well and yRz. Therefore, R is

symmetric.

transitive: Assume that Ry and yRz. Then 2 | x +y and 2 | y + 2. Thus, 2 | z + 2z + 2.

But because 2 | 2y, we have 2 | z + z. Thus, 2Rz and R is transitive.

Therefore, R is an equivalence relation on N.

Forre N, z/R={yeN:2|x+y}. Thus,

T=1{1,3,57,9,---}=3=5=--., and 2= {2,4,6,8,10,---} =2 =F = ...

Therefore, N =1 U 2.

Theorem 3.2.1

Let R be an equivalence relation on a nonempty set A. For all z,y € A,

1. z/RCAand z € /R # ¢.
2. xRy ift. z/R =y/R.
3. xRy iff. z/RNy/R = ¢.

1. Clearly, z/R C A by the definition. SinceR is reflexive, z R z and hence = € z/R.

2. » = 7: Suppose  Ry. Then y Rz (since R is symmetric). To show that z/R = y/R,
we first show that z/R C y/R: Let z € /R = R z and y Rz. Hence, y R z. Hence,
z/R C y/R. The proof of y/R C z/R is similar.

» < ": Suppose £/R =y/R. Then z € z/R = y/R. That is x R y.

3. » = 7: Suppose zKy. We proof by contradiction: Assume that there is z € z/RNy/R.
Then, z € z/R and z € y/R and hence xR z and z Ry. Thus, x Ry, contradiction.

» <= ": Suppose /R Ny/R = ¢. Then, z € /R. Thus, = € y/R and hence zRy.




