Example 3.1.8 Let $\mathcal{R} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x - 1\}$ and let $\mathcal{S} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$. Find $\mathcal{S} \circ \mathcal{R}$ and $\mathcal{R} \circ \mathcal{S}$. #### Solution: $$S \circ \mathcal{R} = \{ (x, y) : (\exists z \in \mathbb{R}) ((x, z) \in \mathcal{R} \text{ and } (z, y) \in \mathcal{S}) \}$$ $$= \{ (x, y) : (\exists z \in \mathbb{R}) (z = x - 1 \text{ and } y = z^2) \}$$ $$= \{ (x, y) : (\exists z \in \mathbb{R}) (y = (x - 1)^2) \}$$ $$\mathcal{R} \circ \mathcal{S} = \{ (x, y) : (\exists z \in \mathbb{R}) ((x, z) \in \mathcal{S} \text{ and } (z, y) \in \mathcal{R}) \}$$ $$= \{ (x, y) : (\exists z \in \mathbb{R}) (z = x^2 \text{ and } y = z - 1) \}$$ $$= \{ (x, y) : (\exists z \in \mathbb{R}) (y = x^1 - 1) \}$$ #### Theorem 3.1.3 Let A, B, C, and D be sets. Let $\mathcal{R} \subseteq A \times B$, $\mathcal{S} \subseteq B \times C$, and $\mathcal{T} \subseteq C \times D$. Then, - 1. $(\mathcal{R}^{-1})^{-1} = \mathcal{R}$. - 2. $\mathcal{T} \circ (\mathcal{S} \circ \mathcal{R}) = (\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R}$. - 3. $(\mathcal{S} \circ \mathcal{R})^{-1} = \mathcal{R}^{-1} \circ \mathcal{S}^{-1}$. # Proof: Proof of part(2): Let $a \in A$ and $d \in D$ so that $$(a,d) \in \mathcal{T} \circ (\mathcal{S} \circ \mathcal{R}) \quad \text{iff} \quad (\exists c \in C) \big[(a,c) \in \mathcal{S} \circ \mathcal{R} \text{ and } (c,d) \in \mathcal{T} \big]$$ $$\text{iff} \quad (\exists c \in C) \big[(\exists b \in B) \big((a,b) \in \mathcal{R} \text{ and } (b,c) \in \mathcal{S} \big) \text{ and } (c,d) \in \mathcal{T} \big]$$ $$\text{iff} \quad (\exists c \in C) (\exists b \in B) \big[(a,b) \in \mathcal{R} \text{ and } (b,c) \in \mathcal{S} \text{ and } (c,d) \in \mathcal{T} \big]$$ $$\text{iff} \quad (\exists b \in B) \big[(a,b) \in \mathcal{R} \text{ and } (\exists c \in C) \big((b,c) \in \mathcal{S} \text{ and } (c,d) \in \mathcal{T} \big) \big]$$ $$\text{iff} \quad (\exists b \in B) \big[(a,b) \in \mathcal{R} \text{ and } (b,d) \in \mathcal{T} \circ \mathcal{S} \big]$$ $$\text{iff} \quad (a,d) \in (\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R}.$$ Proof of part (3): Let $a \in A$ and $c \in C$ so that $$(c,a) \in (\mathcal{S} \circ \mathcal{R})^{-1} \quad \text{iff} \quad (a,c) \in \mathcal{S} \circ \mathcal{R}$$ $$\text{iff} \quad (\exists b \in B) \Big[(a,b) \in \mathcal{R} \text{ and } (b,c) \in \mathcal{S} \Big]$$ $$\text{iff} \quad (\exists b \in B) \Big[(b,a) \in \mathcal{R}^{-1} \text{ and } (c,b) \in \mathcal{S}^{-1} \Big]$$ $$\text{iff} \quad (\exists b \in B) \Big[(c,b) \in \mathcal{S}^{-1} \text{ and } (b,a) \in \mathcal{R}^{-1} \Big]$$ $$\text{iff} \quad (c,a) \in \mathcal{R}^{-1} \circ \mathcal{S}^{-1}.$$ ### Example 3.1.9 Let A = [2, 4] and $B = (1, 3) \cup \{4\}$. Let \mathcal{R} be the relation on $A \times \mathbb{R}$ with $x\mathcal{R}y$ iff $x \in A$ and let \mathcal{S} be the relation on $\mathbb{R} \times B$ with $x\mathcal{S}y$ iff $y \in B$. Find $\mathcal{R} \cap \mathcal{S}$ and $\mathcal{R} \cup \mathcal{S}$. # Solution: By Theorem 3.1.2 part(2), $\mathcal{R} \cap \mathcal{S} = (A \times \mathbb{R}) \cap (\mathbb{R} \times B) = (A \cap \mathbb{R}) \times (\mathbb{R} \cap B) = A \times B$. Therefore, $\mathcal{R} \cap \mathcal{S} = A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$. On the other hand, $\mathcal{R} \cup \mathcal{S} = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a \in A \text{ or } b \in B\}$. #### Exercise 3.1.1 Let A and B be two nonempty sets. Show that if $A \times B \subseteq B \times C$, then $A \subseteq C$. #### Exercise 3.1.2 Let $\mathcal{R} \subseteq A \times B$ and $\mathcal{S} \subseteq B \times C$ be two relations. Show that $\text{Dom}(\mathcal{S} \circ \mathcal{R}) \subseteq \text{Dom}(\mathcal{R})$. # **Section 3.2: Equivalence Relations** #### Definition 3.2.1 Let A be a set and \mathcal{R} be a relation on A. Then \mathcal{R} is called an **equivalence relation** if and only if: - 1. \mathcal{R} is **reflexive** on A: $(\forall x \in A) x \mathcal{R} x$. - 2. \mathcal{R} is **symmetric** on A: $(\forall x, y \in A)$ if $x\mathcal{R}y$, then $y\mathcal{R}x$. - 3. \mathcal{R} is **transitive** on A: $(\forall x, y, z \in A)$ if $x\mathcal{R}y$ and $y\mathcal{R}z$, then $x\mathcal{R}z$. #### Example 3.2.1 Let $A = \{1, 2, 3, 4\}$ and $\mathcal{R}_1 = \{(1, 2), (2, 3), (1, 3)\}$, $\mathcal{R}_2 = \{(1, 1), (1, 2)\}$, $\mathcal{R}_3 = \{(3, 4)\}$, $\mathcal{R}_4 = \{(1, 2), (2, 1)\}$, and $\mathcal{R}_5 = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$. Decide which relation is reflexive, symmetric, transitive. #### **Solution:** \mathcal{R}_5 is reflexive. \mathcal{R}_4 , and \mathcal{R}_5 are symmetric. $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$, and \mathcal{R}_5 are transitive. Therefore, \mathcal{R}_5 is an equivalence relation on A. ### Example 3.2.2 Let $\mathcal{R} = \{(x, y) : xy > 0\}$ be a relation on \mathbb{Z} . Discuss whether \mathcal{R} reflexive, symmetric, transitive, and equivalence relation. #### Solution: Clearly, $x\mathcal{R}x$ for all $x \in \mathbb{Z}$ except for x = 0, thus \mathcal{R} is not reflexive. If $x\mathcal{R}y$, then xy > 0 or yx > 0 which implies that $y\mathcal{R}x$. Thus, \mathcal{R} is symmetric. If $x\mathcal{R}y$ and $y\mathcal{R}z$, then xy > 0 and yz > 0. Considering the cases of $y \in \mathbb{Z} - \{0\}$, we have - 1. case 1: y > 0, then x > 0 and z > 0 which implies that xz > 0 and thus $x\mathcal{R}z$. - 2. case 1: y < 0, then x < 0 and z < 0 which implies that xz > 0 and thus $x\mathcal{R}z$. In either cases, \mathcal{R} is transitive on \mathbb{Z} . Note that \mathcal{R} is not reflexive and thus it is not an equivalence relation on \mathbb{Z} . ### Example 3.2.3 Let \mathcal{R} be the relation on \mathbb{Z} given by $x\mathcal{R}y$ iff x-y is even. Show that \mathcal{R} is an equivalence relation on \mathbb{Z} . #### Solution: <u>Reflexive</u>: Since x - x = 0 is even, $x\mathcal{R}x$ for all $x \in \mathbb{Z}$. Thus, \mathcal{R} is reflexive. Symmetric: Assume that $x\mathcal{R}y$, then there is $k \in \mathbb{Z}$ such that x-y=2k. Thus, y-x=2(-k) which implies that $y\mathcal{R}x$. Thus, \mathcal{R} is symmetric. <u>Transitive</u>: Let $x\mathcal{R}y$ and $y\mathcal{R}z$. Then, there are $h,k\in\mathbb{Z}$ such that x-y=2h and y-z=2k. Adding these two equations, we get x-z=2(h+k) which is even. Therefore, $x\mathcal{R}z$ and \mathcal{R} is transitive. Therefore, \mathcal{R} is an equivalence relation on \mathbb{Z} . #### Definition 3.2.2 Let \mathcal{R} be an equivalence relation on a set A. For $x \in A$, define the **equivalence class** of x determined by \mathcal{R} as $$x/\mathcal{R} = \{ y \in A : x\mathcal{R}y \},\$$ which reads "the class of x modulo \mathcal{R} " or "x mod \mathcal{R} . The set of all equivalence classes is called A modulo \mathcal{R} and is defined by $$A/\mathcal{R} = \{x/\mathcal{R} : x \in A\}.$$ ## Example 3.2.4 Let $\mathcal{R} = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$ be an equivalence relation on $A = \{1,2,3\}$. Find: - $1/\mathcal{R} = \{1, 2\}.$ - $2/\mathcal{R} = \{1, 2\}.$ - $3/\mathcal{R} = \{3\}.$ - $A/\mathcal{R} = \{\{1,2\},\{3\}\}.$ #### Example 3.2.5 Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y \Leftrightarrow 2 \mid x+y$. Show that \mathcal{R} is an equivalence relation on \mathbb{N} . Calculate all the equivalence classes of \mathcal{R} . ## Solution: <u>reflexive</u>: Since x + x = 2x, $2 \mid x + x$ and thus $x\mathcal{R}x$. So, \mathcal{R} is reflexive. symmetric: if $x\mathcal{R}y$, then $2\mid x+y$. Thus, $2\mid y+x$ as well and $y\mathcal{R}x$. Therefore, \mathcal{R} is symmetric. <u>transitive</u>: Assume that $x\mathcal{R}y$ and $y\mathcal{R}z$. Then $2\mid x+y$ and $2\mid y+z$. Thus, $2\mid x+z+2y$. But because $2 \mid 2y$, we have $2 \mid x+z$. Thus, $x\mathcal{R}z$ and \mathcal{R} is transitive. Therefore, \mathcal{R} is an equivalence relation on \mathbb{N} . For $x \in \mathbb{N}$, $x/\mathcal{R} = \{y \in \mathbb{N} : 2 \mid x + y\}$. Thus, $$\overline{1} = \{1, 3, 5, 7, 9, \dots\} = \overline{3} = \overline{5} = \dots$$, and $\overline{2} = \{2, 4, 6, 8, 10, \dots\} = \overline{2} = \overline{4} = \dots$. Therefore, $\mathbb{N} = \overline{1} \cup \overline{2}$. ## Theorem 3.2.1 Let \mathcal{R} be an equivalence relation on a nonempty set A. For all $x, y \in A$, - 1. $x/\mathcal{R} \subseteq A$ and $x \in x/\mathcal{R} \neq \phi$. - 2. $x \mathcal{R} y$ iff. $x/\mathcal{R} = y/\mathcal{R}$. - 3. $x\mathcal{R}y$ iff. $x/\mathcal{R} \cap y/\mathcal{R} = \phi$. ## **Proof:** - 1. Clearly, $x/\mathcal{R} \subseteq A$ by the definition. Since \mathcal{R} is reflexive, $x \mathcal{R} x$ and hence $x \in x/\mathcal{R}$. - 2. " \Rightarrow ": Suppose $x \mathcal{R} y$. Then $y \mathcal{R} x$ (since \mathcal{R} is symmetric). To show that $x/\mathcal{R} = y/\mathcal{R}$, we first show that $x/\mathcal{R} \subseteq y/\mathcal{R}$: Let $z \in x/\mathcal{R} \Rightarrow x \mathcal{R} z$ and $y \mathcal{R} x$. Hence, $y \mathcal{R} z$. Hence, $x/\mathcal{R} \subseteq y/\mathcal{R}$. The proof of $y/\mathcal{R} \subseteq x/\mathcal{R}$ is similar. - " \Leftarrow ": Suppose $x/\mathcal{R} = y/\mathcal{R}$. Then $x \in x/\mathcal{R} = y/\mathcal{R}$. That is $x \mathcal{R} y$. - 3. " \Rightarrow ": Suppose $x\mathcal{R}y$. We proof by contradiction: Assume that there is $z \in x/\mathcal{R} \cap y/\mathcal{R}$. Then, $z \in x/\mathcal{R}$ and $z \in y/\mathcal{R}$ and hence $x \mathcal{R} z$ and $z \mathcal{R} y$. Thus, $x \mathcal{R} y$, contradiction. " \Leftarrow ": Suppose $x/\mathcal{R} \cap y/\mathcal{R} = \phi$. Then, $x \in x/\mathcal{R}$. Thus, $x \notin y/\mathcal{R}$ and hence $x\mathcal{R}y$.