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Definition 3.2.3

Let m # 0 be a fixed integer. Then "=,,” denotes the relation on Z and is defined by
(:vzy modmor:czmy) &Sm|z—y,

which reads "z is congruent to ¥ modulo m”. Thatisz={ye€ Z:xz =,, y < m |z —y},

and the set of equivalence classes for =,, is Z mod m (denoted Z,,) and is defined by

7, ={0,1,2,--- . m—1}.

Example 3.2.6

Find all the equivalence classes of Zjs.

Solution:

Note that Zs = {0,1,2}, wherez ={y € Z:x =y mod 3 or 3 | z — y}. Therefore,

e 0=0/=3={--,-9,-6,-3,0,3.6,9,---},
e 1=1/=3={--,-8,-5,-2,1,4,7,10,--- },
e 2=2/=={..,-7,-4,-1,2,5,8,11,---},

Therefore, Zs = {0, 1, 2}.

Theorem 3.2.2

Let m # 0 be a fixed integer. The relation =,, is an equivalence relation on Z. Moreover, Z,,

has m distinct elements: Z,, = {0,1,--- ,m — 1}.

We only show that =,,, is an equivalence relation. reflexive: Since x —x = 0 which is divisible

by m, x =,,, x. Thus =,, is reflexive.

symmetric: Assume that x =, y, then m | x — y which implies that m | y — z. Thus, y =,, x

and =, is symmetric.

transitive: Assume that z =,, y and y =,, 2, then m | z —y and m | y — 2. Thus, m |

(x —y) + (y — z) which implies m | £ — z. Therefore, x =,, z and =,, is transitive. That

shows that =,,, is an equivalence relation on Z.
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Let m # 0. For z,y € Z: Show that x =,, y if and only if T = 7.

Exercise 3.2.2

Let R be a relation on the set A. Prove that R U R ! is symmetric.

Exercise 3.2.3

Let R be a relation on N so that 2Ry itf 3 | x +y. Determine whether R an equivalence

relation. Explain.

Exercise 3.2.4

Let R be a relation on N so that Ry itf 3 | z + 2y. Show that R is an equivalence relation

on N. Find the equivalence class of 1.

Exercise 3.2.5

Let R be a relation on R so that xRy ifft z = y or xy = 1. Show that R is an equivalence

relation on R. Find the equivalence classes for 2; 0; and —+.

5
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Definition 3.3.1

Let A be a set and A be a family of subsets of A. A is called a partition of A if and only if:
1. if X € A, then X # ¢.
2. if X, Y € A, then either X =Y or X NY = ¢.

3. JX=A
XeA

Example 3.3.1

1. The set of even natural numbers and odd natural numbers is a partition of N.

2. Let Ag = {0} and A; = {—i,i} for all i € N. Then A = {Ag, A1, Az, A3,---} is a

partition of Z.
3. The set {0/ =3,1/ =3,2/ =3} is a partition of Z.

4. The set {{ male students, female students }} is a partition for the set of all students in

Kuwait University.

. The collection { B; : i € Z }, where B; = [i,i + 1) is a partition of R.

cn

Theorem 3.3.1

Let A # ¢ and let R be an equivalence relation on A. Then, the family A/R = {z/R : z € A}

is a partition of A.

Do it your self!
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Section 3.4: Ordering Relations

Definition 3.4.1

A relation R on a set A is called antisymmetric if for all z,y € A, if 2Ry and yRzx, then

5=}

Definition 3.4.2

A relation R on a set A is called a partial order (or partial ordering) for A if R is reflexive,

antisymmetric, and transitive. In that case, A is called a partially ordered set or a poset.

Example 3.4.1

Show that "C” is a partial order relation on P(A) for any set A.

Solution:

reflexive: if X € P(A), then X C A and hence X C X and hence zRz.
antisymmetric: Let X,Y € P(A) with XRY and YRX. Then, X C Y and Y C X.

Therefore, X =Y and R is antisymmetric.

transitive: Assume that X,Y,Z € P(A) with X CY and Y C Z. Then X C Z and hence
XRZ.

Therefore, R is a partial order relation on P(A).

Example 3.4.2

Let R be a relation on N so that aRb < a | b for all a,b € N. Show that R is a partial order
on N.

Solution:

reflexive: Since a = 1-a for all a € N, then a | a and aRa. Hence, R is reflexive.

antisymmetric: Assume that a | b and b | a. Then, there are h,k € N such that b = ha
and a = kb. Thus, b = ha = h(kb) = (hk)b. Then, hk = 1 which implies that h = k = 1.

Therefore, a = b and R is antisymmetric.

transitive: Assume that a | b and b | ¢. Then, Theorem 1.4.1 implies that a | ¢. Thus, aRe
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and R is transitive. Therefore, R is a partial order on N.

Example 3.4.3

Let R be a relation on N so that aRb ift 2 | a + b with a < b for all a,b € N. Show that N is

a poset with respect to R.

Solution:

reflexive: Since 2 | @ + a = 2a with a < a, aRa and R is reflexive.

antisymmetric: Assume that aRb and bRa. Then, 2 | a+ b with a < b and 2 | b+ a with

b < a. Thus, a < b < a which implies that a = . Thus, R is antisymmetric.
transitive: Assume that aRb and bRe. Then, 2 | a+ b with a < band 2 | b+ ¢ with b < c.

Therefore, by Theorem 1.4.1, 2 | a + 2b + ¢ which implies that 2 | a + ¢ with @ < b < ¢. Thus,

aRc and R is transitive. Therefore, N is a poset with respect to R.

3.4.1 Upper and Lower Bounds

Definition 3.4.3

Let R be a partial order for A and let B be any subset of A. Then,
e o € A is an upper bound for B if for every b € B, bRa. Also, a is called a "least
upper bound” or "supremum for B, denoted by sup(B), if:

1. a is an upper bound for B, and

2. aRx for every upper bound z for B.

e o € Ais alower bound for B if for every b € B, aRb. Also, a is called a "greatest

upper bound” or "infimum for B, denoted by inf(B), if:

1. a is a lower bound for B, and

2. xRa for every lower bound z for B.

Theorem 3.4.1

If R is a partial order for a set A and B C A, then if the least upper bound (or greatest lower

bound) for B exists, then it is unique.
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it

Assume that z and y are both least upper bound for B. Since z is an upper bound and y

is the least upper bound, thus yRz. Similarly, since y is an upper bound and z is the least

upper bound, thus zRy. Since R is antisymmetric, xRy and yRzx, implies z = y.

ot
ot

Example 3.4.4

Let A =[0,6) C R be a poset with respect to "<”, and let B = {,3,5} andC = {1, 2,3, }
be two subsets of A. Find sup(B), inf(B), sup(C), and inf(C).

Solution:

sup(B): Note that 5,5.1,5.35,5.9, and so on are all considered upper bounds for B since for

example b < 5 for all b € B. Then, sup(B) = 5 since 5 < zx for all upper bounds for B.

inf(B): 0, %, %, 4—15 and so on are all considered lower bounds for B since for example i < b for

all b € B. Then, inf(B) = £ since 3 < z for all lower bounds z for B.
sup(C'): The set of upper bounds for C' consists of {1,2,1.5,3,5,5.5, - } while the sup(C') =
1.

inf(C'): The set of upper bounds for C' consists of {0} and the inf(C) = 0.

Note that, if A = (0,6), then C would has no inf(C).

Example 3.4.5

Let A = {1,2,3,4,5,6} and consider P(A) with the partial ordering "C”. Let B =
{{1,2},{1,2,3},{1,2,6}}. Find sup(B) and inf(B).

Solution:

Upper bound for B are like {1,2,3,6}, {1,2,3,4,6}, {1,2,3,5,6}, and A it self. Therefore,

sup(B) = {1,2,3,6} = [(J X. On the other hand, ¢, {1}, {2}, and {1,2} are all lower
XeB

bounds for B while the inf(B) = {1,2} = [) X.
XeB
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Exercise 3.4.1

Let R be a relation on N so that zRy ift y = 2Fz for some integer k > 0. Show that N is a

poset with respect to R.




