Definition 3.2.3 Let $m \neq 0$ be a fixed integer. Then " \equiv_m " denotes the relation on \mathbb{Z} and is defined by $$(x \equiv y \mod m \text{ or } x \equiv_m y) \Leftrightarrow m \mid x - y,$$ which reads "x is congruent to y modulo m". That is $\overline{x} = \{y \in \mathbb{Z} : x \equiv_m y \Leftrightarrow m \mid x - y\}$, and the set of equivalence classes for \equiv_m is $\mathbb{Z} \mod m$ (denoted \mathbb{Z}_m) and is defined by $$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{m-1}\}.$$ #### Example 3.2.6 Find all the equivalence classes of \mathbb{Z}_3 . #### Solution: Note that $\mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}$, where $\overline{x} = {y \in \mathbb{Z} : x \equiv y \mod 3 \text{ or } 3 \mid x - y}$. Therefore, - $\overline{0} = 0/\equiv_3 = \{\cdots, -9, -6, -3, 0, 3, 6, 9, \cdots\},\$ - $\overline{1} = 1/\equiv_3 = \{\cdots, -8, -5, -2, 1, 4, 7, 10, \cdots\},$ - $\overline{2} = 2/ \equiv_3 = \{ \cdots, -7, -4, -1, 2, 5, 8, 11, \cdots \},$ Therefore, $\mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}.$ #### Theorem 3.2.2 Let $m \neq 0$ be a fixed integer. The relation \equiv_m is an equivalence relation on \mathbb{Z} . Moreover, \mathbb{Z}_m has m distinct elements: $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}.$ #### Proof: We only show that \equiv_m is an equivalence relation. <u>reflexive</u>: Since x - x = 0 which is divisible by $m, x \equiv_m x$. Thus \equiv_m is reflexive. <u>symmetric</u>: Assume that $x \equiv_m y$, then $m \mid x - y$ which implies that $m \mid y - x$. Thus, $y \equiv_m x$ and \equiv_m is symmetric. <u>transitive</u>: Assume that $x \equiv_m y$ and $y \equiv_m z$, then $m \mid x-y$ and $m \mid y-z$. Thus, $m \mid (x-y)+(y-z)$ which implies $m \mid x-z$. Therefore, $x \equiv_m z$ and \equiv_m is transitive. That shows that \equiv_m is an equivalence relation on \mathbb{Z} . ## Exercise 3.2.1 Let $m \neq 0$. For $x, y \in \mathbb{Z}$: Show that $x \equiv_m y$ if and only if $\overline{x} = \overline{y}$. ### Exercise 3.2.2 Let \mathcal{R} be a relation on the set A. Prove that $\mathcal{R} \cup \mathcal{R}^{-1}$ is symmetric. ## Exercise 3.2.3 Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y$ iff $3\mid x+y$. Determine whether \mathcal{R} an equivalence relation. Explain. ## Exercise 3.2.4 Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y$ iff $3\mid x+2y$. Show that \mathcal{R} is an equivalence relation on \mathbb{N} . Find the equivalence class of 1. ## Exercise 3.2.5 Let \mathcal{R} be a relation on \mathbb{R} so that $x \mathcal{R} y$ iff x = y or xy = 1. Show that \mathcal{R} is an equivalence relation on \mathcal{R} . Find the equivalence classes for 2; 0; and $-\frac{1}{5}$. ## **Section 3.3: Partitions** #### Definition 3.3.1 Let A be a set and \mathcal{A} be a family of subsets of A. \mathcal{A} is called a **partition** of A if and only if: - 1. if $X \in \mathcal{A}$, then $X \neq \phi$. - 2. if $X, Y \in \mathcal{A}$, then either X = Y or $X \cap Y = \phi$. - $3. \ \bigcup_{X \in \mathcal{A}} X = A.$ ## Example 3.3.1 - 1. The set of even natural numbers and odd natural numbers is a partition of \mathbb{N} . - 2. Let $A_0 = \{0\}$ and $A_i = \{-i, i\}$ for all $i \in \mathbb{N}$. Then $\mathcal{A} = \{A_0, A_1, A_2, A_3, \cdots\}$ is a partition of \mathbb{Z} . - 3. The set $\{0/\equiv_3, 1/\equiv_3, 2/\equiv_3\}$ is a partition of \mathbb{Z} . - 4. The set {{ male students, female students }} is a partition for the set of all students in Kuwait University. - 5. The collection $\{B_i : i \in \mathbb{Z}\}$, where $B_i = [i, i+1)$ is a partition of \mathbb{R} . ## Theorem 3.3.1 Let $A \neq \phi$ and let \mathcal{R} be an equivalence relation on A. Then, the family $A/\mathcal{R} = \{x/\mathcal{R} : x \in A\}$ is a partition of A. ## **Proof:** Do it your self! # Section 3.4: Ordering Relations #### Definition 3.4.1 A relation \mathcal{R} on a set A is called **antisymmetric** if for all $x, y \in A$, if $x\mathcal{R}y$ and $y\mathcal{R}x$, then x = y. #### Definition 3.4.2 A relation \mathcal{R} on a set A is called a **partial order** (or **partial ordering**) for A if \mathcal{R} is reflexive, antisymmetric, and transitive. In that case, A is called a **partially ordered set** or a **poset**. #### Example 3.4.1 Show that " \subseteq " is a partial order relation on $\mathcal{P}(A)$ for any set A. #### Solution: <u>reflexive</u>: if $X \in \mathcal{P}(A)$, then $X \subseteq A$ and hence $X \subseteq X$ and hence $x\mathcal{R}x$. antisymmetric: Let $X, Y \in \mathcal{P}(A)$ with $X\mathcal{R}Y$ and $Y\mathcal{R}X$. Then, $X \subseteq Y$ and $Y \subseteq X$. Therefore, X = Y and \mathcal{R} is antisymmetric. <u>transitive</u>: Assume that $X, Y, Z \in \mathcal{P}(A)$ with $X \subseteq Y$ and $Y \subseteq Z$. Then $X \subseteq Z$ and hence $X\mathcal{R}Z$. Therefore, \mathcal{R} is a partial order relation on $\mathcal{P}(A)$. #### Example 3.4.2 Let \mathcal{R} be a relation on \mathbb{N} so that $a\mathcal{R}b \Leftrightarrow a \mid b$ for all $a, b \in \mathbb{N}$. Show that \mathcal{R} is a partial order on \mathbb{N} . #### Solution: <u>reflexive</u>: Since $a = 1 \cdot a$ for all $a \in \mathbb{N}$, then $a \mid a$ and $a\mathcal{R}a$. Hence, \mathcal{R} is reflexive. antisymmetric: Assume that $a \mid b$ and $b \mid a$. Then, there are $h, k \in \mathbb{N}$ such that b = ha and a = kb. Thus, b = ha = h(kb) = (hk)b. Then, hk = 1 which implies that h = k = 1. Therefore, a = b and \mathcal{R} is antisymmetric. <u>transitive</u>: Assume that $a \mid b$ and $b \mid c$. Then, Theorem 1.4.1 implies that $a \mid c$. Thus, $a\mathcal{R}c$ and \mathcal{R} is transitive. Therefore, \mathcal{R} is a partial order on \mathbb{N} . #### Example 3.4.3 Let \mathcal{R} be a relation on \mathbb{N} so that $a\mathcal{R}b$ iff $2 \mid a+b$ with $a \leq b$ for all $a,b \in \mathbb{N}$. Show that \mathbb{N} is a poset with respect to \mathcal{R} . #### **Solution:** <u>reflexive</u>: Since $2 \mid a + a = 2a$ with $a \leq a$, $a\mathcal{R}a$ and \mathcal{R} is reflexive. antisymmetric: Assume that $a\mathcal{R}b$ and $b\mathcal{R}a$. Then, $2 \mid a+b$ with $a \leq b$ and $2 \mid b+a$ with $b \leq a$. Thus, $a \leq b \leq a$ which implies that a = b. Thus, \mathcal{R} is antisymmetric. <u>transitive</u>: Assume that $a\mathcal{R}b$ and $b\mathcal{R}c$. Then, $2 \mid a+b$ with $a \leq b$ and $2 \mid b+c$ with $b \leq c$. Therefore, by Theorem 1.4.1, $2 \mid a+2b+c$ which implies that $2 \mid a+c$ with $a \leq b \leq c$. Thus, $a\mathcal{R}c$ and \mathcal{R} is transitive. Therefore, \mathbb{N} is a poset with respect to \mathcal{R} . ## 3.4.1 Upper and Lower Bounds #### Definition 3.4.3 Let \mathcal{R} be a partial order for A and let B be any subset of A. Then, - $a \in A$ is an **upper bound** for B if for every $b \in B$, $b\mathcal{R}a$. Also, a is called a "least **upper bound**" or "supremum for B, denoted by $\sup(B)$, if: - 1. a is an upper bound for B, and - 2. $a\mathcal{R}x$ for every upper bound x for B. - $a \in A$ is a **lower bound** for B if for every $b \in B$, $a\mathcal{R}b$. Also, a is called a "**greatest upper bound**" or "**infimum** for B, denoted by $\inf(B)$, if: - 1. a is a lower bound for B, and - 2. xRa for every lower bound x for B. #### Theorem 3.4.1 If \mathcal{R} is a partial order for a set A and $B \subseteq A$, then if the least upper bound (or greatest lower bound) for B exists, then it is unique. ## **Proof:** Assume that x and y are both least upper bound for B. Since x is an upper bound and y is the least upper bound, thus $y\mathcal{R}x$. Similarly, since y is an upper bound and x is the least upper bound, thus $x\mathcal{R}y$. Since \mathcal{R} is antisymmetric, $x\mathcal{R}y$ and $y\mathcal{R}x$, implies x=y. ## Example 3.4.4 Let $A = [0, 6) \subset \mathbb{R}$ be a poset with respect to "\le ", and let $B = \{\frac{1}{2}, 3, 5\}$ and $C = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$ be two subsets of A. Find $\sup(B)$, $\inf(B)$, $\sup(C)$, and $\inf(C)$. #### Solution: $\underline{\sup(B)}$: Note that 5, 5.1, 5.35, 5.9, and so on are all considered upper bounds for B since for example $b \le 5$ for all $b \in B$. Then, $\sup(B) = 5$ since $5 \le x$ for all upper bounds for B. $\underline{\inf(B)}$: $0, \frac{1}{2}, \frac{1}{4}, \frac{1}{45}$ and so on are all considered lower bounds for B since for example $\frac{1}{4} \leq b$ for all $b \in B$. Then, $\inf(B) = \frac{1}{2}$ since $\frac{1}{2} \leq x$ for all lower bounds x for B. $\underline{\sup(C)}$: The set of upper bounds for C consists of $\{1, 2, 1.5, 3, 5, 5.5, \cdots\}$ while the $\sup(C) = 1$. $\inf(C)$: The set of upper bounds for C consists of $\{0\}$ and the $\inf(C) = 0$. Note that, if A = (0,6), then C would has no $\inf(C)$. #### Example 3.4.5 Let $A = \{1, 2, 3, 4, 5, 6\}$ and consider $\mathcal{P}(A)$ with the partial ordering " \subseteq ". Let $B = \{\{1, 2\}, \{1, 2, 3\}, \{1, 2, 6\}\}$. Find $\sup(B)$ and $\inf(B)$. ### Solution: Upper bound for B are like $\{1, 2, 3, 6\}$, $\{1, 2, 3, 4, 6\}$, $\{1, 2, 3, 5, 6\}$, and A it self. Therefore, $\sup(B) = \{1, 2, 3, 6\} = \bigcup_{X \in B} X$. On the other hand, ϕ , $\{1\}$, $\{2\}$, and $\{1, 2\}$ are all lower bounds for B while the $\inf(B) = \{1, 2\} = \bigcap_{X \in B} X$. ## Exercise 3.4.1 Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y$ iff $y=2^kx$ for some integer $k\geq 0$. Show that \mathbb{N} is a poset with respect to \mathcal{R} .