Definition 3.2.3

Let $m \neq 0$ be a fixed integer. Then " \equiv_m " denotes the relation on \mathbb{Z} and is defined by

$$(x \equiv y \mod m \text{ or } x \equiv_m y) \Leftrightarrow m \mid x - y,$$

which reads "x is congruent to y modulo m". That is $\overline{x} = \{y \in \mathbb{Z} : x \equiv_m y \Leftrightarrow m \mid x - y\}$, and the set of equivalence classes for \equiv_m is $\mathbb{Z} \mod m$ (denoted \mathbb{Z}_m) and is defined by

$$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{m-1}\}.$$

Example 3.2.6

Find all the equivalence classes of \mathbb{Z}_3 .

Solution:

Note that $\mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}$, where $\overline{x} = {y \in \mathbb{Z} : x \equiv y \mod 3 \text{ or } 3 \mid x - y}$. Therefore,

- $\overline{0} = 0/\equiv_3 = \{\cdots, -9, -6, -3, 0, 3, 6, 9, \cdots\},\$
- $\overline{1} = 1/\equiv_3 = \{\cdots, -8, -5, -2, 1, 4, 7, 10, \cdots\},$
- $\overline{2} = 2/ \equiv_3 = \{ \cdots, -7, -4, -1, 2, 5, 8, 11, \cdots \},$

Therefore, $\mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}.$

Theorem 3.2.2

Let $m \neq 0$ be a fixed integer. The relation \equiv_m is an equivalence relation on \mathbb{Z} . Moreover, \mathbb{Z}_m has m distinct elements: $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}.$

Proof:

We only show that \equiv_m is an equivalence relation. <u>reflexive</u>: Since x - x = 0 which is divisible by $m, x \equiv_m x$. Thus \equiv_m is reflexive.

<u>symmetric</u>: Assume that $x \equiv_m y$, then $m \mid x - y$ which implies that $m \mid y - x$. Thus, $y \equiv_m x$ and \equiv_m is symmetric.

<u>transitive</u>: Assume that $x \equiv_m y$ and $y \equiv_m z$, then $m \mid x-y$ and $m \mid y-z$. Thus, $m \mid (x-y)+(y-z)$ which implies $m \mid x-z$. Therefore, $x \equiv_m z$ and \equiv_m is transitive. That shows that \equiv_m is an equivalence relation on \mathbb{Z} .

Exercise 3.2.1

Let $m \neq 0$. For $x, y \in \mathbb{Z}$: Show that $x \equiv_m y$ if and only if $\overline{x} = \overline{y}$.

Exercise 3.2.2

Let \mathcal{R} be a relation on the set A. Prove that $\mathcal{R} \cup \mathcal{R}^{-1}$ is symmetric.

Exercise 3.2.3

Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y$ iff $3\mid x+y$. Determine whether \mathcal{R} an equivalence relation. Explain.

Exercise 3.2.4

Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y$ iff $3\mid x+2y$. Show that \mathcal{R} is an equivalence relation on \mathbb{N} . Find the equivalence class of 1.

Exercise 3.2.5

Let \mathcal{R} be a relation on \mathbb{R} so that $x \mathcal{R} y$ iff x = y or xy = 1. Show that \mathcal{R} is an equivalence relation on \mathcal{R} . Find the equivalence classes for 2; 0; and $-\frac{1}{5}$.

Section 3.3: Partitions

Definition 3.3.1

Let A be a set and \mathcal{A} be a family of subsets of A. \mathcal{A} is called a **partition** of A if and only if:

- 1. if $X \in \mathcal{A}$, then $X \neq \phi$.
- 2. if $X, Y \in \mathcal{A}$, then either X = Y or $X \cap Y = \phi$.
- $3. \ \bigcup_{X \in \mathcal{A}} X = A.$

Example 3.3.1

- 1. The set of even natural numbers and odd natural numbers is a partition of \mathbb{N} .
- 2. Let $A_0 = \{0\}$ and $A_i = \{-i, i\}$ for all $i \in \mathbb{N}$. Then $\mathcal{A} = \{A_0, A_1, A_2, A_3, \cdots\}$ is a partition of \mathbb{Z} .
- 3. The set $\{0/\equiv_3, 1/\equiv_3, 2/\equiv_3\}$ is a partition of \mathbb{Z} .
- 4. The set {{ male students, female students }} is a partition for the set of all students in Kuwait University.
- 5. The collection $\{B_i : i \in \mathbb{Z}\}$, where $B_i = [i, i+1)$ is a partition of \mathbb{R} .

Theorem 3.3.1

Let $A \neq \phi$ and let \mathcal{R} be an equivalence relation on A. Then, the family $A/\mathcal{R} = \{x/\mathcal{R} : x \in A\}$ is a partition of A.

Proof:

Do it your self!

Section 3.4: Ordering Relations

Definition 3.4.1

A relation \mathcal{R} on a set A is called **antisymmetric** if for all $x, y \in A$, if $x\mathcal{R}y$ and $y\mathcal{R}x$, then x = y.

Definition 3.4.2

A relation \mathcal{R} on a set A is called a **partial order** (or **partial ordering**) for A if \mathcal{R} is reflexive, antisymmetric, and transitive. In that case, A is called a **partially ordered set** or a **poset**.

Example 3.4.1

Show that " \subseteq " is a partial order relation on $\mathcal{P}(A)$ for any set A.

Solution:

<u>reflexive</u>: if $X \in \mathcal{P}(A)$, then $X \subseteq A$ and hence $X \subseteq X$ and hence $x\mathcal{R}x$.

antisymmetric: Let $X, Y \in \mathcal{P}(A)$ with $X\mathcal{R}Y$ and $Y\mathcal{R}X$. Then, $X \subseteq Y$ and $Y \subseteq X$.

Therefore, X = Y and \mathcal{R} is antisymmetric.

<u>transitive</u>: Assume that $X, Y, Z \in \mathcal{P}(A)$ with $X \subseteq Y$ and $Y \subseteq Z$. Then $X \subseteq Z$ and hence $X\mathcal{R}Z$.

Therefore, \mathcal{R} is a partial order relation on $\mathcal{P}(A)$.

Example 3.4.2

Let \mathcal{R} be a relation on \mathbb{N} so that $a\mathcal{R}b \Leftrightarrow a \mid b$ for all $a, b \in \mathbb{N}$. Show that \mathcal{R} is a partial order on \mathbb{N} .

Solution:

<u>reflexive</u>: Since $a = 1 \cdot a$ for all $a \in \mathbb{N}$, then $a \mid a$ and $a\mathcal{R}a$. Hence, \mathcal{R} is reflexive.

antisymmetric: Assume that $a \mid b$ and $b \mid a$. Then, there are $h, k \in \mathbb{N}$ such that b = ha and a = kb. Thus, b = ha = h(kb) = (hk)b. Then, hk = 1 which implies that h = k = 1.

Therefore, a = b and \mathcal{R} is antisymmetric.

<u>transitive</u>: Assume that $a \mid b$ and $b \mid c$. Then, Theorem 1.4.1 implies that $a \mid c$. Thus, $a\mathcal{R}c$

and \mathcal{R} is transitive. Therefore, \mathcal{R} is a partial order on \mathbb{N} .

Example 3.4.3

Let \mathcal{R} be a relation on \mathbb{N} so that $a\mathcal{R}b$ iff $2 \mid a+b$ with $a \leq b$ for all $a,b \in \mathbb{N}$. Show that \mathbb{N} is a poset with respect to \mathcal{R} .

Solution:

<u>reflexive</u>: Since $2 \mid a + a = 2a$ with $a \leq a$, $a\mathcal{R}a$ and \mathcal{R} is reflexive.

antisymmetric: Assume that $a\mathcal{R}b$ and $b\mathcal{R}a$. Then, $2 \mid a+b$ with $a \leq b$ and $2 \mid b+a$ with $b \leq a$. Thus, $a \leq b \leq a$ which implies that a = b. Thus, \mathcal{R} is antisymmetric.

<u>transitive</u>: Assume that $a\mathcal{R}b$ and $b\mathcal{R}c$. Then, $2 \mid a+b$ with $a \leq b$ and $2 \mid b+c$ with $b \leq c$. Therefore, by Theorem 1.4.1, $2 \mid a+2b+c$ which implies that $2 \mid a+c$ with $a \leq b \leq c$. Thus, $a\mathcal{R}c$ and \mathcal{R} is transitive. Therefore, \mathbb{N} is a poset with respect to \mathcal{R} .

3.4.1 Upper and Lower Bounds

Definition 3.4.3

Let \mathcal{R} be a partial order for A and let B be any subset of A. Then,

- $a \in A$ is an **upper bound** for B if for every $b \in B$, $b\mathcal{R}a$. Also, a is called a "least **upper bound**" or "supremum for B, denoted by $\sup(B)$, if:
 - 1. a is an upper bound for B, and
 - 2. $a\mathcal{R}x$ for every upper bound x for B.
- $a \in A$ is a **lower bound** for B if for every $b \in B$, $a\mathcal{R}b$. Also, a is called a "**greatest upper bound**" or "**infimum** for B, denoted by $\inf(B)$, if:
 - 1. a is a lower bound for B, and
 - 2. xRa for every lower bound x for B.

Theorem 3.4.1

If \mathcal{R} is a partial order for a set A and $B \subseteq A$, then if the least upper bound (or greatest lower bound) for B exists, then it is unique.

Proof:

Assume that x and y are both least upper bound for B. Since x is an upper bound and y is the least upper bound, thus $y\mathcal{R}x$. Similarly, since y is an upper bound and x is the least upper bound, thus $x\mathcal{R}y$. Since \mathcal{R} is antisymmetric, $x\mathcal{R}y$ and $y\mathcal{R}x$, implies x=y.

Example 3.4.4

Let $A = [0, 6) \subset \mathbb{R}$ be a poset with respect to "\le ", and let $B = \{\frac{1}{2}, 3, 5\}$ and $C = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$ be two subsets of A. Find $\sup(B)$, $\inf(B)$, $\sup(C)$, and $\inf(C)$.

Solution:

 $\underline{\sup(B)}$: Note that 5, 5.1, 5.35, 5.9, and so on are all considered upper bounds for B since for example $b \le 5$ for all $b \in B$. Then, $\sup(B) = 5$ since $5 \le x$ for all upper bounds for B.

 $\underline{\inf(B)}$: $0, \frac{1}{2}, \frac{1}{4}, \frac{1}{45}$ and so on are all considered lower bounds for B since for example $\frac{1}{4} \leq b$ for all $b \in B$. Then, $\inf(B) = \frac{1}{2}$ since $\frac{1}{2} \leq x$ for all lower bounds x for B.

 $\underline{\sup(C)}$: The set of upper bounds for C consists of $\{1, 2, 1.5, 3, 5, 5.5, \cdots\}$ while the $\sup(C) = 1$.

 $\inf(C)$: The set of upper bounds for C consists of $\{0\}$ and the $\inf(C) = 0$.

Note that, if A = (0,6), then C would has no $\inf(C)$.

Example 3.4.5

Let $A = \{1, 2, 3, 4, 5, 6\}$ and consider $\mathcal{P}(A)$ with the partial ordering " \subseteq ". Let $B = \{\{1, 2\}, \{1, 2, 3\}, \{1, 2, 6\}\}$. Find $\sup(B)$ and $\inf(B)$.

Solution:

Upper bound for B are like $\{1, 2, 3, 6\}$, $\{1, 2, 3, 4, 6\}$, $\{1, 2, 3, 5, 6\}$, and A it self. Therefore, $\sup(B) = \{1, 2, 3, 6\} = \bigcup_{X \in B} X$. On the other hand, ϕ , $\{1\}$, $\{2\}$, and $\{1, 2\}$ are all lower bounds for B while the $\inf(B) = \{1, 2\} = \bigcap_{X \in B} X$.

Exercise 3.4.1

Let \mathcal{R} be a relation on \mathbb{N} so that $x\mathcal{R}y$ iff $y=2^kx$ for some integer $k\geq 0$. Show that \mathbb{N} is a poset with respect to \mathcal{R} .