4

Functions

Section 4.1: Functions as Relations

Definition 4.1.1

A function f from A to B is a relation from A to B that satisfies

- 1. Dom(f) = A,
- 2. if $(x, y) \in f$ and $(x, z) \in f$, then y = z.

Moreover, if A = B, we say that f is a function on A.

Remark 4.1.1: Notations

A function (mapping) f from A to B is denoted by $f:A\to B$. The **domain** of f is A and the **codomain** of f is B.

If $(x, y) \in f$, then y = f(x) where we say that y is the **image** of x and that x is the **preimage** of y. The **range** of f is a subset of B and is defined as

$$\operatorname{Rng}(f) = \{y \in B: \exists x \in A \text{ with } y = f(x)\}.$$

Example 4.1.1

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. Let $\mathcal{R}_1 = \{(1, a), (2, b), (2, c), (3, c)\}$, $\mathcal{R}_2 = \{(1, a), (2, c), (3, b)\}$, and $\mathcal{R}_3 = \{(1, a), (2, c)\}$ be three relations on $A \times B$. Decide whether \mathcal{R}_1 , \mathcal{R}_2 , and \mathcal{R}_3 a function.

Solution:

 \mathcal{R}_1 is clearly not a function since (2, b) and (2, c) both are in \mathcal{R}_1 where $b \neq c$. \mathcal{R}_2 satisfies the conditions of Definition 4.1.1 and so it is a function from A to B.

 \mathcal{R}_3 is not a function from A to B; however, it is a function from $\{1,2\}$ to $\{a,c\}$.

Example 4.1.2

Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$ be a relation on \mathbb{R} . Is S a function? Explain.

Solution:

Note that for x=0, we have y=-1 or y=1 and so \mathcal{S} is not a function. Another reason is that for $x=5,\,y^2=-24\not\in\mathbb{R}$.

Example 4.1.3

Let $f = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y = x^2\}$. Determine whether f a function on \mathbb{Z} .

Solution:

 $f: \mathbb{Z} \to \mathbb{Z}$ is a function with $\operatorname{Rng}(f) = \{0, 1, 4, 9, 16, \cdots\}$. That is $f(x) = x^2$ is a function from \mathbb{Z} to \mathbb{Z} .

* Constant Function: $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = c (c is a constant) for all $x \in \mathbb{R}$.

Example 4.1.4

Let $f = \{ (x, y) \in \mathbb{R} \times \mathbb{R} : y = 2x + 5 \}$. Show that f is a function from \mathbb{R} to \mathbb{R} .

Solution:

We first show that $Dom(f) = \mathbb{R}$. Clearly, $Dom(f) \subseteq \mathbb{R}$ by the definition of f. Next, let $x \in \mathbb{R}$. Then there is $y = 2x + 5 \in \mathbb{R}$ and hence $(x, y) \in f$. That is $x \in Dom(f)$.

Now assume that $(x,y),(x,z)\in f$, we want to show that y=z. But since y=2x+5 and z=2x+5, we have y=z. Therefore, f is a function from $\mathbb R$ to $\mathbb R$.

Theorem 4.1.1

Two functions f and g are equal iff (i) Dom(f) = Dom(g), and (ii) for all $x \in$ Dom(f), f(x) = g(x).

Proof:

" \Rightarrow ": Assume that f = g. Proof of (i): If $x \in \text{Dom}(f)$, then $(x, y) \in f = g$ for some y and hence $x \in \text{Dom}(g)$. Thus, $\text{Dom}(f) \subseteq \text{Dom}(g)$. Similarly, if $x \in \text{Dom}(g)$, then $(x, y) \in g = f$

for some y and hence $x \in \text{Dom}(f)$. Thus, $\text{Dom}(g) \subseteq \text{Dom}(f)$. Therefore, Dom(f) = Dom(g). Proof of (ii): Let $x \in \text{Dom}(f)$. Then for some y, $(x,y) \in f = g$. Thus, f(x) = y = g(x). f(x) = g(x) = g(x). Suppose that $f(x,y) \in f$, then there is $f(x,y) \in f$, then there is $f(x,y) \in f$, and $f(x,y) \in f$. Thus, f(x) = g(x) = g(x) which implies that $f(x,y) \in g$ and hence $f(x,y) \in g$. Now suppose that $f(x,y) \in g$. Then there is $f(x,y) \in g$. Then there is $f(x,y) \in g$. Therefore, $f(x) \in g$. Therefore, $f(x) \in g$. Therefore, $f(x) \in g$.

Section 4.2: Constructions of Functions

Definition 4.2.1

Let $f: A \to B$ and $g: B \to C$ be two given functions. The **composition function** $g \circ f$ is defined by $g \circ f: A \to C$ where $(g \circ f)(x) = g(f(x))$ for every $x \in A$. Note that $f \circ g \neq g \circ f$, while $(f \circ g) \circ h = f \circ (g \circ h)$ for any three (appropriate) functions f, g, and h.

Example 4.2.1

Let $f(x) = \sin(x)$ and g(x) = 2x + 1 for $x \in \mathbb{R}$. Find $f \circ g$ and $g \circ f$.

Solution:

For any $x \in \mathbb{R}$, we have

1.
$$(f \circ g)(x) = f(g(x)) = f(2x+1) = \sin(2x+1)$$
.

2.
$$(g \circ f)(x) = g(f(x)) = g(\sin(x)) = 2\sin(x) + 1$$
.

Definition 4.2.2

Let $f: A \to B$ and let $D \subseteq A$. The "restriction of f to D", denoted by $f|_D$, is a function with domain D and is defined as

$$f|_{D} = \{(x, y) : (x, y) \in f \text{ and } x \in D\}.$$

In that case, we say that f is an **extension** of $f|_D$.

Example 4.2.2

Let $f:A\to B$ be a function where $A=\{1,2,3,4\},\ B=\{a,b,c\},\$ and $f=\{(1,a),(2,a),(3,b),(4,c)\}.$ Find $f|_A,\ f|_{\{1\}},\$ and $f|_{\{2,4\}}.$

Solution:

Clearly, $f|_A = f$, $f|_{\{1\}} = \{(1, a)\}$, and $f|_{\{2,4\}} = \{(2, a), (4, c)\}$.

Remark 4.2.1

Let $f:A\to B$ and $g:C\to D$ be two functions. Then,

- 1. $f \cap g$ is a function with $\text{Dom}(f \cap g) = \{x \in A \cap C : f(x) = y = g(x) \in B \cap D\}$.
- 2. If $A \cap C = \phi$, then $f \cup g$ is a function with domain $A \cup B$.

Example 4.2.3

Let $f = \{(1,2), (3,5), (4,2)\}$ and $g = \{(1,2), (3,6), (5,-10)\}$. Find $f \cap g$ and $f \cup g$ and decide whether either of those relation is a function.

Solution:

Clearly, f is a function from $A = \{1, 3, 4\}$ to $B = \{2, 5\}$ while g is a function from $C = \{1, 3, 5\}$ to $D = \{2, 6, -10\}$. So,

- $f \cap g = \{(1,2)\}$ which is clearly a function from $\mathrm{Dom}(f \cap g) = \{1\}$ to $\{2\}$.
- $f \cup g = \{(1,2), (3,5), (4,2), (3,6), (5,-10)\}$ which is not a function (by the definition) since 3 maps to two different values, namely 5 and 6.