Ministry of Higher Education & Scientific Research

UNIVERSITY OF ANBAR

College of Education for pure Science-Department of Mathematics

وزارة التعليم العالي والبدث العلمي جامعة الأنبار كلية التربية للعلوم الصرفة—الرياضيات

استمارة انجاز الخطة التدريسية للماحة

أ.م.د. علاء محمود فرحان علي					الاسم
alaa_mf1970@yahoo.com					البريد الالكتروني
التبولوجيا العامة ⁽¹⁾ التبولوجيا ا <mark>لعامة</mark> ⁽²⁾					اسم المادة
دراسة الفضاءات التبولوجية لفصلين دراسيين					مقرر الفصل
	Sollege Of Eq.		ضاءات التبول <mark>وجية</mark> .	 1- التأكيد على أهمية موضوع الفضا 3- أن يتعرف الطلبة على أنواع الفواح 2- تبصير الطلبة بالفضاءات التبولو 	اهداف المادة
	008			4- أن نبين للطلبة أهم تطبيقات الفد	28
التبولوجيا هو فرع مهم وممتع من فروع الرياضيات حيث يمكن ملاحظة اهمية الفضاءات التبولوجية من خلال تاثيرها					
الواضح في جميع فروع الرياضيات الاخرى وهذا يجعل دراسة التبولوجيا ذات علاقة مع كل الذين يطمحون ان يصبحوا					التفاصيل
رياضيون سواء أكان حبهم الأول (الجبر, <mark>التحليل, الهند</mark> سة, الديناميكا, الرياضيات الصناعية, الميكانيكا الكمية, نظرية					الاساسية للمادة
التبولوجيا العامة - التبولوجيا الجبرية - العدو, بحوث العمليات أو الأحصاء) والتبولوجيا لها عدة فروع مختلفة مثل					
التبولوجيا التفاضلية والتبولوجيا الجبرية وال <mark>تبو</mark> لو <mark>جية</mark> الهندسية.					
1- General topology, by: Willard's. W. Addison Wesley, eading, mass, (1970).					الكتب المنهجية
2-Topology a first course, by: Munkres. J. R. (1975).					R
➤ General topology, by: J.L., Kelley's. General topology, by: Bourbaki's.					المصادر الخارجية
الامتحان النهائي	المشروع	الامتحانات اليومية	المختبر	الفصل الدراسي	تقديرات الفصل
60%		%10		%30	1
يطلب من الطلبة في بعض الأحيان كتابة تقرير في الواجبات التي تعطى لهم خلال الكورس الدراسي					

lectures in Topological Spaces-Mathematics

department-Fourth stage

Syllabus

- 1- Definitions and (Examples) of a Topological Space.
- 2- Types of Topological Spaces.
- 3- Closed subsets of a topological space. 4- Neighborhoods.
- 5- Closure of a Set. 6- Topologies Induced by Functions.
- 7- Interior of a Set, Exterior of a Set, Boundary of a Set and Cluster Points.
- 8- Dense Subset of the Space. 9- Dense Subset of the Space.
- 10- Continuous Functions.
- 11- Open and Closed mappings
- 12- Homeomorphisms.
- 13- Topological spaces and Hereditary Property.
- 14- Compactness in Topological Spaces.
- 15- Connectedness in Topological Spaces.
- 16- Separation Axioms and study relationships between them.

Sub-Spaces on Topological Space

Introduction:

It is always possible to construct new topologies from the given ones. The simplest one is the relativized Topology.

If (X, T) is topological space and $Y \subset X$, then Y can inherit a topology from X; as shown in the following result.

Definition:

If (X, T) is topological space and $Y \subset X$, then, the collection $T_Y = \{G \cap Y : G \in T\}$ is a topology on Y.

Proof: We observe that T_Y satisfies the following properties:

$$\emptyset \in T \ and \ \emptyset \cap Y = \emptyset \Rightarrow \emptyset \in T_V;$$

$$X \in T \ and \ X \cap Y = Y \Rightarrow Y \in T_Y;$$

Let $\{H_{\alpha}: \alpha \in \Delta\}$ be any family of sets in T_{γ} .

Then, for each $\alpha \in \Delta \exists$ a set $G_{\alpha} \in T$ such that $H_{\alpha} = G_{\alpha} \cap Y$.

$$\cup \{ \boldsymbol{H}_{\alpha} : \alpha \in \Delta \} = \cup \{ \boldsymbol{G}_{\alpha} \cap \boldsymbol{Y} : \alpha \in \Delta \}$$

$$= [\cup \{ G_{\alpha} \cap Y : \alpha \in \Lambda \}] \cap Y \in T_{Y}, \text{since } \cup \{ G_{\alpha} : \alpha \in \Lambda \} \in T;$$

Let H_1 and H_2 be any two sets in T_Y .

Then $H_1 = G_1 \cap Y$ and $H_2 = G_2 \cap Y$ for some G_1 , G_2 in T.

$$H_1\cap H_2=(G_1\cap Y)\cap (G_2\cap Y)$$

$$= (G_1 \cap G_2) \cap Y \in T_Y$$
, since $G_1 \cap G_2 \in T$.

Hence, T_Y is a topology for Y.

Remark:

This topology T_Y is the relativized or inherited topology on Y. Also (Y, T_Y) is called the sub-space of (X, T_Y) .

Example

Let $X = \{a, b, c, d, e\}$ and let $T = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ be a topology on X.

Let $Y = \{a, d, e\}$.

Then, we have

 ${a, c, d} \cap Y = {a, d}$ and ${b, c, d, e} \cap Y = {d, e}.$

T relativized topology on Y is given by

$$T_{Y} = \{Y, \emptyset, \{a\}, \{d\}, \{a, d\}, \{d, e\}\}.$$

Example:

Consider the usual topological space $(R,\,u)$. Let N be the set of all natural numbers. Then, the relativized topology u_N on N is the discrete topology.

Proof: For an arbitrary $n \in N$, we have

$$\{n\} = \left[n - \frac{1}{2}, n + \frac{1}{2}\right] \cap N \in u_N \text{ since } \left[n - \frac{1}{2}, n + \frac{1}{2}\right] \in u.$$

Thus, each singleton subset of N is u_N - open.

Now, if A is any subset of N, then it can be expressed as the union of singleton subsets of N, each one of which is u_N - open.

And, the arbitrary union of sets being open, it following that A is u_N - open. Thus, every subset of N is u_N - open. Hence, the relativized topology for N is the discrete topology.

Remark:

If (Y, T_Y) is a sub-space of the space (X, T_Y) , then a set open in X is not necessarily open in Y