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Chapter I

Normed vector spaces,
Banach spaces and metric
spaces

1 Normed vector spaces and Banach spaces

In the following let X be a linear space (vector space) over the field F € {R, C}.
Definition 1.1. A seminorm on X is amapp: X — R, = [0,00) s.t.

(a) plax) = |a|p(x) Va € F, Vo e X (homogeneity).

(b) plx +y) <plz)+ply) Y,y € X (triangle inequality).

If, in addition, one has

(e} nlz) =0=w=0

then p is called a norm. Usually one writes p(x) = ||z||, p= || - ||. The pair
(X, ]]) s called a normed (vector) space.

Remark 1.2. o If||-] is a seminorm on X then
|||1|| - ||y|H < |z =yl Vr,y€ X (reverse triangle inequality).
Proof.

|| = |z —y +yll < llz—yll + ||yl
= ||zl = Iyl £ llz =y

Now swap x&y: ||z|| = [|y|| < |ly — z|| = [[(=1)(z = y)|| = ||z — y]|.
Hence

[zl = llyll] = maz(llzll = llyll, Iyl = llzl)) < llz — gl

(7]
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e |[0]l = [10.0]] = [o].]|0]| = O.
Interpret ||z — y|| as distance between x and y.

Definition 1.3. Let (z,)nen = (Zn)n be a sequence in a normed vector space
X (X,||-N))- Then (x,), converges to a limit x € X if Y= > 03N, € N s.t.
VYn > N. it holds ||z, — z|| < € (or ||zn. — z|| < &). One writes =,, — x or
B Tas=

(zn)n is a Cauchy sequence if V= > 0IN. € N s.t. Vn,m > N. it holds
”-’E'n. R :L'rn” <Eg (07' ||:E-71. - -Trn.” = 5)~

(X, || - |) is complete if every Cauchy sequence converges.

A complete normed space (X, || - ||) is called a Banach space.

Remark 1.4. Let X be a normed vector space, (x,), a sequence in X.

(a) If x,, — x in X, then (x,), is a Cauchy sequence.

Proof. Given € > 03N, : Vn > N, : ||z — z,|| < §. Hence for n,m > N, we

have
|Zn — Zm|l = llzn —x +x — Zw|| < |lzn — || + ||z — zm|| < &.
O
(b) Limits are unique!
If x,, >z mm X and x,, — y in X, then x = y.
Proof.
lz —yll = ||z — zn + zn — Yl
< ||zn —z|| + ||z —y|l 204+0=0 asn — oc.

O

(c) If (x,)n converges or is Cauchy, then il is bounded, i.e.

sup ||z, < oc.
nel

Proof. Take € = 1. Then there exists N € Ns.t. YVn,m > N : ||z, — Zn|| <
1. In particular, Vn > N : ||z, — zn]|| < 1.

= [|znll = |zn — 28 + 2N < |0 — x| + llzn]l < 1+ [lzn]] (YR €N)

seesllzn]l, 1+ lzn]l) < oo

= Vn € N : ||z,|| < max(||z1], ||z=2]
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Let X be a normed vector space, S # () a set. For functions f,g : S — X,

o, 8 € IF define
 —_— {S — X
I s (f + 9)(s) = f(5) + g(s)

£ S = X
s e (@f)(s) = af(s)

So the set of functions from S to X is a normed space itself!
In case X =R, we write f > a (or f > «a)if f(s) > aforalls € S (f(s) >«
for all s € S). Similarly one defines o« < f < 3, f < g, ete.

Example 1.5. (a) X = F?,d € N is a Banach space (or short B-space) with
respect to (w.r.t) the norms

n L
lelp == (3" I=517)”, 1< p<oo,
i=1
l#leo := max |z;].
Here r = (x1,%2,...,xq) € F<.

(b) Let Q # 0, L>=(Q2) = L><(Q,R) = the set of all real-valued functions on Q

which are bounded, i.e.
f € L°(R2) then My < oo : |f(w)| < My for all w € (2.

Norm on L>(Q2): for f € L*() : ||flloc = sup_eq |f(w)| (check that this
is a norm!).
Claim: (L>(Q2), || - ||le) s a Banach space.

Proof. Normed vector space is clear.

Take (f,.) a Cauchy sequence in L>(2) w.r.t. || -||o. We have: Ve > 03N :
Vo,m 2N ||l fa= Fwllee < &.

Fix w € €, then (f,(w)) is a Cauchy sequence in R since

| fr(w) — fr(w)| < zlclg | fr(w) — fe(@)| = || frn — fimlloe <€ Vn,m > N.

Since R is complete, f(w) := lim,, o fn(w) exists (this f is the candidate
for the limit). We have

|f(@)| < |f(w) = fa(@)| + | fr(w)]
= lim |fin@) = fu(@)| + |fa@)| € €4 | fu(w)]
T —r 00 ‘(w’—‘

= supuealf(w)| < oo,

i.e., f € L*>°(Q2).
Take £ > 0. Then

Ifn(w) L .[(W')I = "}i_l)nxlfn (W) - fm(w)l <e ifn=N

<e if n,m>N
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= VRSN ¢ || fa=Flloc X8 1640 = FWIt || los-

O

(c) X =C(0,1]), | f]1 := gl‘ | f(t)|dt is a norm, (C([O, 113, ||||1) is not complelte.

Proof.
Ifll. =0 VfeC([0,1]).
1
Ilf+ gl = /If(t) +g@)|dt < |[fllx + llglh
— ———
0 <ifr@I+lg)|
1
laslls = [ las@lde = lall £l
0
So || - || is a seminorm.

If f # 0 and f is continuous, we see that there exist an interval I C [0, 1],
6 > 0 such that |f(t)| > o6 VL € 1.

1
= ||fll. = /|/(t)|dt = flf(t)|dl. > d.lehgth of I > 0.
0 r g

So || - ||1 is a seminorm. Now take a special sequence
0, ifo<t<i-—1
fo@)=qnt—%+1, fi—Lf<t<i (n>3)
1,ift > 3

For m > n > 3:

1

"

[ frn = frlls = / | fn(t) — fm(®)|dt < 71—) — 0 asn — oo,

i__ 1
2 n

so (fn) is a Cauchy sequence.
Assume that f, — f € C([0,1]). Fix o € [(), %),n . % e

"

0< )/ £ ()]t = / fn(t) — F(8)]dt

1
< / fu(®) = F(O)]dt = [[fn — fll1 — O.
0

Hence f(t) =0forall0<t<a,all0<a< %

i |
f(t) =0 foralld <t < >
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On the other hand

1 1
OS/If(t)—lldt=/If(t)-fn(t)ld-ts If = fall = 0 asn— oo

Since f is continuous on [0, 1], it follows that f(¢) = 1 for % o R 1S

So f cannot be continuous at t = % A contradiction. (]

2 Basics of metric spaces

Definition 2.1. Given a set M # (), a metric (or distance) d on M 1is a function
d: M x M — R such that

(a) d(x,y) =2 0Vz,y € M and d(z,y) =0 < z =y.
(b) d(xz,y) =d(y,x) Y,y € M (symmetry).
(c) dlx,y) < d(x,z) +d(z,y) Vx,y,z € M (triangle inequality).
The pair (M,d) is called a metric space. We often simply write M if it is
clear what d is.
A sequence (x,)n tn a metric space (M,d) converges to x € M if Ve > 03N, €
Nvn > N : d(x,x,) < € (or < £). One writes limzx,, = x or x,, — x.
One always has
|d(x, 2) — d(z,y)| < d(z,y)
Hint for the proof:
d(z,z) < d(z,y) + d(y, z)
and think and use symmetry.

Example 2.2. e R with d(x,y) = |z — yl|;

e Any normed vector space (X, || - ||) with d(z,y) = ||l — y||;
d L
e Eucledian space R? (or C?) with do(z,y) = ( X |z; —y;|?)? ordy(z,y) =
a=1
d 1
(2 l=5—w;il?) ", ordos(z,¥) = max;—y, ..alx; —y;l-
i=1

e M # 0, defined: M x M — R by

dzsy)a= {0’ vz =y

1, else
is discrete metric. (M,d) is called discrete metric space.

o M = (0,00), d(z,y) = \% - %| is a metric.
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e Paris metric

d(z,y) := |z —yl, if x = Ay for some A > 0,
S |z| + |y|, else.

e [f(M,d) is a metric space, N C M, then (N,d) is a metric space. Exam-
ple: M =R2, N = {x : |z| = 1}.

e M = FN = set of all sequences (an)n,an € F = set of all functions a :
N — IF is a metric space with metric

= laG) = b))
d(a,b) := 22 1+ a() — b()

Proof. d(a,b) = 0,d(a,b) = 0 = a = b,d(a,b) = d(b,a) are clear.
Need d(a,b) < d(a,c) + d(e, b) for all sequences a, b, c.

. t . . o< . !
Note: 0 < ¢t +» 7 is increasing!

=, la() — b))
d(a’b)_;z 1+ |a(j) — b(5)|

o o—j_la(i) — ()| + |e(d) — ()|
=2 2 T (aG) — oI+ 16G) — B

= laG) — @)l () — b(3)|
=20 (1+|a<j) —cl T T Ie@ —b(j)l)’

since, by the triangle inequality, |a(j) — b(j)| < |a(j) — c(§)| + |e(F) — b(F)]-
Note: (an)n € FM.a,, — a in F¥ <= Vj € N : a,(j) — a(j) and this
space is complete!

i 1+ |an(j) — a(d)] < d(a,,a) for fixed j

= lan () — a(d)| < 2’d(an, a) (1 + lan(5) — a()])
~——
<1 for » large enough
. 1
< 2Vd(an,a) + §|an(j) — a(j)| for n large enough
= for n large enough:|a,(j) — a(j)| < 27" 'd(a,,a) — 0 as n — oc,

so an — a in FN = Vj € N : a,(j) — a(j).
Need <«:

B o lan(7) — a(F)|
d(an,a) = 22 b 1+ lan(j) . G(J)l

j=1

L oo
D _277lan(G) —a()l + > 27

L+1

IA

e ~~ z e
<L max;=1, L |an(i)—a(i)l <5 by choosingL large enough
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Definition 2.3. Let (M,d) be a metric space.
e The open ball at x with radius v > 0: B.(x) :={y € M : d(x,y) < r}.
e AC M is open if Vx € A Ir > 0 with B, (x) C A.

Note: Fvery open ball is itself an open set! Indeed, y € B, (x),r, := r—d(z,y) =
B, (x) C B,(x) since, if z € B,,(y) then

d(z,z) <d(z,y) +d(y,z) <d(z,y) +m =7
so z € B,(x).
Theorem 2.4. (a) M and () are open.
(b) An arbitrary union of open sets is open.
(c) Finite intersections of open sets are open.
Proof. (a) Clear.
(b) Take (A;)jcs, Aj C M open.
zel|JAj={yveM:3jeTJwithyec A;} =3TjeJ:xzcA,
jeJT

Since A; is open, there exists » > 0 with B, (z) C A; c UJ
Uje.l A; is open.

(c) Take {A4,...A,} open sets in M

e Aj. Hence

zeA:=A;={yeM:ycA;forall j=1,...n}

=1

Ajopen=>3r; >0: B, (x) C Aj,j =1,...n. Letr := min(ry,r2,...,m) >
0. Then

B,(x) C Br(xr) C Ajforall j=1,...n

= B.(z) C [ ) 4;
i=1

O

Definition 2.5. (a) x € A is called an interior point of A if Ir > 0 : B, (x) C
A. The set of all interior points is denoted by A°.
Note:
e A? is the largest open subset of M contained in A.
e A is open <—> A = A°.

(b) A C M is closed if its complement A° :== M\ A={xec M:xz¢& A} is
open;
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Theorem 2.6. (a) M and () are closed.
(b) Arbitrary intersections of closed sets are closed.
(¢) Finite unions of closed sets are closed.
Proof. (a) M*c =0, ¢ = M are open.
(b) (Aj)jes family of closed sets. By Theorem 2.4 and de Morgan’s law
( ﬂ Aj>c = U Aj is open,
jed Jj€d
s0 [jes Aj is closed;

(¢) Combine (U;’zl Aj)c = ;= A with (¢) of Theorem 2.4.
O

Definition 2.7. A point x € M is called closure point of A C M if Vr > 0 :
B, (z)NA# 0. The set of all closure points of A is denoted by A and it is called
the closure of A.

Clearly A C A.

Theorem 2.8. Let (M,d) be a metric space, A C M. Then A is the smallest
closed set that contains A.

Remark 2.9. Let Fy4 := {B C M : B is closed and A C B}. Then the smallest
closed subset of M that contains A is, of course, given by ﬂBe:“ B. (think about
this!) ‘

Proof of Theorem 2.8. Let A C M.

Step 1: A is closed. Indeed, if z € (A)¢, then 3r > 0 with B.(z) N A = 0. We
want to show that B,(z) C (A)°, because then (A)¢ is open, hence A is closed.
Let y € B,(x). Since B, (x) is open, there exists § > 0 with B;(y) C B,(x)

= Bs(yyNAC B, (x)NA=10

= y & A and since y € B,.(x) was arbitrary, this shows
B.(x)NA=0

so B,.(x) C (A)¢, hence (A)¢ is open. -
Step 2: Let B < M be closed with A € B. We show A € B. Indeed, take
x € B€. Since B is open, there exists r > 0 with B, (z) C B¢, i.e., B,.(x)NB = 0.
In particular, B,(x) N A C B,(x) N B = 0. So no point in B¢ is a closure point
of A =4 c/(Bf)F=B8. O

Corollary 2.10. A C M is closed = A = A.

Proof. Have a close look at Theorem 2.8. l:]
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Remark 2.11. e oraec M andr > 0 call
Br(a) ;= {zx € M : d(x,a) < 7}
the closed ball at a with radius r. This is always a closed set. Indeed,
assume x ¢ By(a), t.e., d(x,a) > r and set ry := d(x,a) —r > 0. If

y € B, (x), then

d(a,z) < d(a,y) + d(y, x)

A d((L., ?/) = d((l,.T) - d(?/w'ﬁ) > (1((1.,.’13) —Tr =T

i.e., y ¢ Br(a), hence B,,(x) C (Br(a))® so (Br(a))¢ is open < Br(a) is
closed.

e One always has B,(a) C By(a). In a discrete metric space the above
inclusion can be strict! But, e.q., in R? with the distance dp,1 < p < o0,
one always has B,(a) = By(a). (think about this!)

Lemma 2.12. If (M,d) is a metric space, then A° = (A°)°.

Proof.

rTeEA’ S Ir>0:B.(x)c A
= B () A =
& x € (A°)°.

O

Definition 2.13. Let (M,d) be a metric space, A C M. A point x € M 1is an
accumulation point of A if

Vr >0 B.(x)Nn(A\{z}) #0,
i.e., every open ball around x contains an element of A different from x.
Note:
e It can be that xz ¢ A!
e Every accumulation point is a closure point of A.

e If one denotes the set of all accumulation points of A by A’, then one has

A= AU A (why?).

Theorem 2.14. Let A C M, (M,d) a metric space. Then x € M belongs to A
if and only if (iff) there is a sequence (x,), C A with limz,, = x. Moreover, if
x is an accumulation point of A, then there exists a sequence (x,), C A with
T F# Ty F Tm,n Fm, i.e., all terms are distinct.
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