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14 CHAPTER I. NVS, BS AND MS

Proof. Let x € A. Given n € N pick z,, with x,, € B,.(z) N A(# 0 since = € A").
Then z,, € A and lim x,, = x.

Conversely, if z,, € A and lim x,, = x, then given r > 0 there exists &£ € N such
that d(x,z,) < r for all n > k. Therefore B,(x)NA# @ forallr >0 =z € A.
If  is an accumulation point of A, choose 1 € A,z # x and d(x,x,) < 1.
Then, inductively, if z1,...2x, € A\ {z} pich 2,41 € A\ {} with

1
n+1’

d(x,Tn4+1) < min (

d(x,xn)).

Thus (x,), is a sequence in A\ {z}, &, # x,, if n # m and limz,, = «. [
Definition 2.15. A ¢ M is dense in M if A = M.

Remark 2.16. e By Theorem 2.14, A is dense in M iff Vx € M, 3 sequence (x
A with imz,, = x.

e A is dense in M < VN A # 0 for every nonempty open set V.

Definition 2.17. Let A C M. x € M is a boundary point of A if Vr > 0 :
B.(x)NA#0# B,.(x) N A¢. The set of all boundary points of A is denoted by
JA and it is called boundary of A.

Note:
e By symmetry, 0A = J(A°).
e A = AN A (Why?)

Definition 2.18 (Continuity). Let (M,d), (N, p) be two metric spaces. A func-
tion f : M — N is

e continuous at a point a € M if Ve > 035 = 6(g) > 0 with p(f(x), f(a)) < e
for all d(x,a) < 4.

e continuous on M (or simply continuous) if f is continuous at every point
Of M.

e sequentially continuous at a point a € M if for every sequence (x,), C
M, x,, — a one has f(x,) — f(a).

e sequenctially continuous on M (or simply sequentially continuous) if it is
sequentially continuous at every point of M.

e topologically continuous if for every open set O the set f~1(O) € M is
open.

Theorem 2.19. For a function f : (M,d) — (N, p) between two metric spaces,
the following are equivalent:

(a) f is continuous on M.
(b) f is topologically continuous on M.
(c) [ is sequentially continuous on M.

(d) f(A) c f(A) for every A C M.
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(e) f~H€) C M is closed for every closed subset C C N.

Remark 2.20. For a fizred a € M, the following are also equaivalent:
(a’) f is continuous at a.

(¢’) [ is sequentially continuous at a.

(Prove this!)

Proof of Theorem 2.19. (a) = (b): Let O € N be open and a € f }(9). Since
f(a) € O and O is open, there exists » > 0 such that B,.(f(a)) C O C N.
f continuous implies that there exists 4 > 0 such that

d(z,a) < 6 = p(f(), f(a)) <,

i.e., Bs(a) C f~1(0) and so f~1(0) is open.

(b) = (¢): Let z,, - zin M and € > 0. Let V := B.(f(x)) € N, which is
open. Then f~!'(V) is open in M and since z € f~1(V) there exists § > 0
such that Bs(z) € f~1(V). Let N € N be such that n > N = z,, € Bs(x)
(i.e., d(xn,x) < & for all n > N), Then also z,, € f~1(V), so f(zn) € V, i.c.,
p(f(xn), f(x)) <eforall n > N. Thus f(z,) = f(z).

(c) = (d): Let A ¢ M. Assume y € f(A). Then there exists x € A with
f(x) = y. Since x € A, by Theorem 2.14, it follows that there exists a sequence
(zn)n € A with x,, — z, but then by (c¢): f(zn,) — f(x) in N, i.e., y € f(A).
So £(A) C F(A). )

(d) = (e): Let € € N be closed, so € = €. Let A := f~1(€). Then by (d) we
have

f(A)crfay=c=e,

so A C f~1(€) = A. Since A C A is always true, we must have f~1(C) = A = A,
i.e., f71(C) is closed.
(e) = (a): Let a € M and £ > 0. Consider

€ := B.(f(a))" ={y € N : p(f(a),y) = <}

which is closed. By (e) f~1(€) € M is closed, i.e., (f_l(ff))C is open. Thus,
since a ¢ f~ (@), i.e., a € (f_l((f))c, there exists § > 0 such that Bs(a) C
(f_l(e))c. But then d(z,a) < § = p(f(z), f(a)) < =, i.e., f is continuous. [

Remark 2.21. It should be clear that compositions of continuous functions are
continuous.

Definition 2.22. e Two metric spaces (M,d), (N, p) are homeomorphic
if 3 a one-to-one onto function (i.e., bijection) f : (M,d) — (N, p) such
that both f and f—' are continuous;

e Two metrics d and p on M are equaivalent if a sequence (x,), C M
satisfies

limd{zx;:, ) =0 <+ Imolen,x) =20,

or equaivalently, if any open set w.r.t. d is open w.r.t. p and conversely.
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e A metric space M is bounded, if 30 < M < oo s.t. d(z,y) < MVz,y €
M. The diameter of A C M is

d(A) :=sup(d(z,y) : z,y € A).
Note: If d is a metric on M

d(zx,y)

plx,y) = Tt d(s.)

is an equaivalent metric on M under which M is bounded!

e A sequence (x,), in a metric space (M,d) is a Cauchy sequence if
Ve > 03N € N: d(xzn,xm) < € for all n,m > N;.

Note: FEvery convergent sequence (x,), ts a Cauchy sequence (Why?).

The converse is not true, e.g. take M = (0,00),d(x,y) = |x — y|. Then

x, = + is Cauchy but not convergent in M .
T -

e A metric space (M,d) is complete (or complete metric space) if every
Cauchy sequence converges (in M ).

Example 2.23. o R with Eucledean metric or with dy, 1 < p< &5

e L=(5),8 £ 0, D(f,g) = sup,es 1f(s) — 9(5)|-
Theorem 2.24. Let (M, d) be a complete metric space. Then A C M 1is closed

if and only if (A,d) is a complete metric space (in its own right).

Proof. "=": Let A C M be closed, (z,), C A be Cauchy = (x,), is Cauchy
in M. Since M is complete, it follows that = lim,, ,~ x,, exists in M. Since
A is closed, we conclude that x € A. So (x,), converges in A and thus (A, d) is
complete.

“<=": Let (A,d) be complete. Let (z,), C A converge to some z € M.
So (xy,), is Cauchy in A, A is complete = (x,), converges to some point in
A C M. The limit is unique so x = lim,, ... x,, € A. So A is closed. [13)

Lemma 2.25. Let (M,d) be a metric space and (p)n, (Yn)n € M s.t. x, —
T, Y, — y. Then

lim d(x,,y,) = d(z,y).
n—oc

Proof. By the triangle inequality one has

|d(il.', 2) - (1(2, y)l = d(:l?, y)

= |d(xn, yn) — d(z, y)| < |d(zn,yn) — d(x, yn)| + |d(x, yn) — d(x,y)|
< d(Tn,z) +d(yn,y) = 0 asn — oo.

O

Definition 2.26. A function f : (M,d) — (N, p) is called uniformly contin-
uous if Ve > 036 > 0: x,y € M,d(x,y) < d(or < d) = p(f(x), f(y)) < e(or <
£).
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Remark 2.27. e Fuvery uniformly continuous function is continuous.

e M = (0,1],N = R, d(z,y) = |z —y|,d : (0,1] = R,z — f(x) = z? is
uniformly continuous, g : (0,1] —» R,z — g(z) = —i- is continuous but not
uniformly continuous.

Theorem 2.28. Let A be a subset of a metric space (M, d), (N, p) be a complete
metric space. If f : A — N is uniformly continuous, then f has a unique
uniformly continuous extension to the closure A of A.

Remark 2.29. This does not hold if f is only continuous!
Example: 1) f:(0,1] > R,z — .

: ifz?2>2
—1, fax?2<?2
Note that f also is differentiable on Q with zero derivative!

Look at g(x) =z +4f(x),z € Q = ¢'(x) = 1. So g "must” be increasing! (?).
But

2) f: Q- R,z — is a continuous function in Q!

9(=2) = 2,

g(0) = —4.
So g is not increasing!
Proof of Theorem 2.28. Step 1: Uniqueness should be clear (why?).
Step 2: Let z € A. By Theorem 2.14, there exists a sequence (x,),, C A with
T, — T.
Claim: lim,, ,~ f(x,) exists in (N, p)!
(V, p) is complete = we only need to show that (f(x,)) is Cauchy in (N, p). Let
£ > 0. Since f is uniformly continuous, 36 > 0 : d(xz,y) < d = p(f(x), f(y)) < =.
So let N € N be such that d(z,,z,,) < dforalln,m > N, = p(f(xn), f(xm)) <
e for all n,m > N-.
Step 3: The limit lim,, ,~ f(x,) in Step 2 is independent of the sequence as long
as x,, = x. Indeed, let (zn)n, (Yn)n € A, 2, — x,y, — x in M. By Step 2 we
know that v = lim f(x,),v = lim f(y,) exist in N. We want to show u = v.
For n € N, let 23,, = T, 22n—1 = Yn = 2n — T also, and, by Step 2: lim f(z,)
exists. We have

v= lim fly,) = Hm f(2sn_1) =1m f(z;) = lim f(zs,) =1m f(x,) =u.

Step 4: Define f* = lim f(x,),z, € A, z,, — x (well defined by Steps 2&3). Of
course f* (x)f f(x),z € A is an extension of A to A.
Step 5: f* : A — N is uniformly continuous. Indeed, given € > 0, let 6 > 0

such that z,y € A,d(z,y) < § = p(f(z), f(y)) < . Now if z,y € A satisfy
d(z,y) < 9, let (xp)n, (Yn)n C A, x, — z,y, — y. By Lemma 2.25

limd(z,,yn) =d(x,y) < d = INg € N:d(xn,yn) <0 or all n > Np.
Since f is uniformly continuous
p(f(xn), f(yn)) <€
By Lemma 2.25
p(f(x), f(y)) = limp(f(x), f(y)) <=

so f* is uniformly continuous. ]
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Definition 2.30. e A function f : (M,d) — (N,p) is an isometry if
p(f(x), f(y)) = d(z,y) for all x,y € M. If f is also onto, then (M,d)
and (N, p) are isometric.

Note: any isometry is uniformly continuous!

e A complete metric space (N, p) is called a completion of a metric space
(M, d) if there exists an isometry [ : (M,d) — (N, p) such that f(M) =
{ye N:3x e M :y= f(z)} is dense in N (w.r.t p).

If we think of M and f(M) as identical, then M can be considered to be
a subset of N.

Remark 2.31. Any two completions of a metric space (M, d) must be isomeltric.

Proof. Indeed, if N;, Ny are completions of AM:

N D dense g(M) < M L5 f(M) dense ¢ N;

f. g are isometries. Define h := go f 1 : f(M) — f(M). h is also an isometry
(so, it is uniformly continuous). f(M) is dense in N3, N, is complete, so by
Theorem 2.23 h has a unique uniformly continuous extension h: N, — Ns.

Note: h is an isometry from N; onto Na! (Why?) (use that g(M) is dense in
1‘\"2). O

Our approach to completeness: Given a metric space (M, d), find a complete
metric space (N, p) and an isometry f : (M,d) — (N, p). f(M) is then isometric
to M. Take the closure f(M) in N. Then (f(M),p) < (N, p) is a completion
of (M, d)!

Theorem 2.32. FEvery metric space (M,d) has a unique (up to isometries)
complelion.

Proof. Goal: Embedd M in a complete metric space and take the closure!
We will use (L°°(M), D), the bounded real-valued functions on M with

D(f,g) := sup |f(z) — g(z)].
xeM

Fixae M. For x € M let

i3 M — R,
Ty = fa(y) == d(z,y) — d(y, a).
By the reverse triangle inequality:
|f=(@)| = |d(z,y) — d(y, a)| < d(x,a)

So f. € L>(M). Hence there exists a unique

)M — L>~(M),
"Nz— fs.

Claim: f is an isometry!
Indeed, for z,y,z € M:

| f=(y) — f2(y)| = |d(x,y) — d(y,a) — (d(z,y) — d(y, a))|
= |d(z,y) — d(z,y)| < d(z, ).
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= D(fz, fy) = sup |fz(y) — f-(y)| < d(z, 2).
yeM
Choose y = z:

|f2(2) = f2(2)| = |d(=, 2) — d(z, 2)| = d(z, 2),

S0
D(.fz:a .fz) == d(J?.Z)

Since (L>°(M), D) is a complete metric space = (f(M), D) is a completion of
(M, d). O

3 Compactness in metric space
In the following let (M, d) be a metric space.

Definition 3.1 (Totally bounded set). A subset A C M is totally bounded if
Ve >03IneN:zy,...,x, € M with A C |J,_, B(x:) (so each x € A is within
e-distance from some x;).

Remark 3.2. (a) Every x € A can be approrimated up to error £ by one of the

(b) In a finite dimensional (vector) space totally bounded is equivalent to bounded.
In general totally bounded = bounded, but the converse in wrong!

(¢) In Definition 3.1 we could easily insist that each e-ball is centered at some
point in A. Indeed, let € > 0, choose x1,...,x, € M.

i=1

W.l.o.g., we may assume that Bs(x;) N A # . Then choose any y; € AN
Bs (xi). By the triangle inequality: Bg(x;) C B:(y:) = A C Uj—, B=(vi)-

Lemma 3.3. A C M is totally bounded <> Ve > 0 there exist finitely many sets
Ay, ... A, with diam(A;) < e foralli=1,...n and A C U?’zl A;.

Proof. "=": Let A be totally bounded. Given £ > 0 choose z,...x, € M with
A c Ui, Bc(x;). Let A; := ANB.(x;) to see that | J._; A; = U, ANB.(z;) =
AN (Ui, B:(z;) = A and note that diam(A;) < 2=.

“4=": Given £ > 0 assume that there are finitely many A; C A,7 = 1,...,n,
diam(A;) < e, A C |J;—, Ai. Then choose any z; € A; = A; C Ba.(z;)(Vi =
1...n) = A c U, Ba(zi)- O

Remark 3.4. In Lemma 3.3 we insisted on A; C A(VWi = 1...n). This is not
a real constraint. If A is covered by By,...,B,, C M, diam(B;) < . Then A
is also covered by A; = AN B; C A and diam(A;) < diam(B;) < =.

There is also a sequential criterion for total boundedness. The Key observa-
tion is
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Lemma 3.5. Let (z,)n € M, A = {x, :n € N}. Then
(a) If (x,)n is Cauchy, then A is totally bounded.
(b) If A is totally bounded, then (x,), has a Cauchy subsequence.

Proof. (a) Let € > 0. Since (z,), is Cauchy, there exists N € N with
£

1"71,3'1n
(X, 2 )<2

for all n,m > N

E
= SUp dLu, Tin) = =< €
n,m=>N 2

=sdigm{z, inZ N}= sup d(Tn. Tm) < &
n.m=>N

e = NC Balaox).

(b) If A is finite, we are done because by pidgeonholing, there must be a point
in A which the sequence (x,),, hits infinitely often. Thus (x,), even has a
constant subsequence in this case.

So assume that A is an infinite totally bounded set. Then A can be covered
by finitely many sets of diameter << 1. At least one of them must contain
infinitely many points of A. Call this set A;. Note that A, is totally
bounded, so it can itself be covered by finitely many sets of diameter < %

One of these, call it Ao, contains infinitely many points of 4;. Continuing

inductively we find a decreasing sequence of sets A D Ay D A3 D -+ D

A, D A1 D ... where each A; contains infinitely many x,, and where

diam(Ag) < £.

Now choose a subsequence (x,, )i, *n, € Ar,k € N. This subsequence is

Cauchy, since

1

sup(d(xn,, xn,, )I,m = k) < diam(Ag) < T

O

Theorem 3.6 (Sequential characterization of total boundedness). A set A C M
is totally bounded <= every sequence in A has a Cauchy subsequence.

Proof. “=": Clear by Lemma 3.5.

“<=": Assume A is not totally bounded. So for some £ > 0, A cannot be
covered by finitely many e-balls. By induction, there is a sequence (x,), € A
with d(x,,x,,) =  for all n % m (Why?). But this sequence has no Cauchy
subsequence! L]

Corollary 3.7 (Bolzano-Weierstrafl). Every bounded infinite subset of R? has
an accumulation point.

Proof. Let A € R? be bounded and infinite. Then there is a sequence (z,)n
of distinct points in A. Since A is totally bounded (R? has dimension d < o)
there is a Cauchy subsequence of (x,),, but R? is complete, so (z,), converges
to some x € R?. This x is an accumulation point of A. I:l
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Now we come to coxnpa(:t.ncss.

Definition 3.8. e A metric space (M,d) is compact if it is complete and
totally bounded.

e A subset A C M is compact, if (A,d) is a compact metric space.
Example 3.9. (a) K C R? is compact <= K is closed and bounded.

(b) Let 1°° = set of all bounded sequences and let

-~ ~ 0 17 7: ] = 77‘
€n = On, On (J) i {O f:fl-;'](’

Then the set A := {e,,|n € N} is closed and bounded, but not totally bounded,
since

d(en,em) = sug len(7) —em(G)| =1, ifn#m,
je

7
hence, A cannot be covered by finitely many = = %-ball.s.’ (Why?)
(¢) A subset of a discrete meltric space is compact <= A is finite. (Why?)
The sequential characterization of compactness is given by

Theorem 3.10. (M, d) is compact <= every sequence in M has a convergent
subsequence in M .

Proof. By Lemma 3.5 and the definition of completenes:
every sequence in M
has a Cauchy subsequence
+
Cauchy sequences converge

totally bounded
+ <
complete

Compactness is an extremely useful property to have: if you happen to
have a sequence in a compact space which does not converge, simply extract a
convergent subsequence and use this one instead!

Corollary 3.11. Let A be a subset of a metric space M. If A is compact, then
A is closed in M (and totally bounded). If M is compact and A is closed, then
A is compact.

Proof. Assume that A is compact and let z € M and (z,), € A with z,, — x.
By Theorem 3.10, (x,), has a convergent subsequence whose limit is also in
A= x e Aso Ais closed.

Assume M is compact, A € M is closed. Given (x,), € A, Theorem 3.10
supplies a convergent subsequence of (z,), which converges to a point x €
M. Since A is closed, we must have € A, so by Theorem 3.10 again, A is
compact. D
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Corollary 3.12. Let (M,d) be compact and f : M — R continuous. Then f
attains its maximum and minimum, i.e., there are Tmin, Tmax © M such that

f(@min) = inf(f(z)|x € M),
f(@max) = sup(f(z)|r € M),

In particular, inf and sup are finite!

Proof. Only for mininmum (otherwise look at — f).
Let a := inf(f(x)|x € M). Note that there is always a minimizing sequence,
i.e., a sequence (x,), C M such that

f(zn) > a asn — oc.

Now if (x,), converges to some point x € M, then we are done, since by
continuity of f,

Fl)= nli?c’,‘c.f(-”?") =a = inf(f(x)|lx € M).

If (z, ), does not converge, use the fact that M is compact, so by Theorem 3.10
(z,)n has a convergent subsequence and then use this subsequence instead! [O

Corollary 3.13. Let (N, p) be a metric space. If (M,d) is compact and f :
(M.d) — (N, p) is continuous, then f is uniformly continuous.

Proof. Recall the definition of uniform continuity:
Ve >030 >0:xz,y € M,d(x,y) < d = p(f(x), f(y)) < e&.

So assume that f is not uniformly continuous. Then by negating the above one
sees

Jde >0:Vd > 03z, y € M,d(z,y) <96 and p(f(x), f(y)) = =.

Now fix this e > 0 and let 0 = 71—1 Then there must exist x,,y, € M,d(z,,yn) <
~ and p(f(xn), f(yn)) = €. Since (¥n)n € M and M is compact, there exists
a subsequence (yn, )i of (yn)n which converges to some point y. Look at (x,,);-
Again by compactness, there exists a subsequence (z,, ); which converges to

some point z. Since T, — T and Yn,, — Y We have
d(z,y) = lim d(xzy,, Y, ) =0,
k—oc k L

ije, £ =2y.
But since p(f(z,), f(yn)) = & > 0, we have

lim f(zn,, ) # lim f(yn, )
k—oc 4 k— o0 k
so [ is not continuous at x.

Thus f not uniformly continuous = f not continuous <= [ continuous = f
uniformly continuous. ]
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