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4 The sequence spaces [’(N),1 < p < oo

Definition 4.1. e [*°(N) is the space of all bounded sequences x : N — F
equipped with the norm

|z|loo := sup |znl.
nel

e Let 1 < p < oc. IP(N) is the space of all sequences x : N — F for which

> |znl? < co. With
nel

el o= (3 lwal”)

necnN

it becomes a normed vector space.
Lemma 4.2. Let 1 < p < oco. Then (IP(N),|| - |[p) is a normed vector space.

Proof. Case 1: p = oo should be immediate.

Case 2: 1 < p < oo is more complicated. It is not even obvious why (7, | - ||,,)
is a vector space. If x € IP and € F, then ax € I? is clear, but if x,y € IP(N)
why is x + y € IP(N)?

Let =,y € IP(N), i.e., ||z|lp. |l¥llp < oo. Then

oc o0
Z |Tn + ynl? < 2(2 max(|znl, |yn|))?
n=1 n=1
ol o =
=27 3~ max(|znl, lyal) < 2P (3 |2al® + 3 lyal?) < oo

n=1 n=1 n=1

so x +y € IP(N).
To show that || - ||, is a norm, we only have to check the triangle-inequality and
for this we need some more help.

Lemma 4.3 (Holder inequality). Let 1 < p < oo and define the dual exponent
q € [1,00] by

OC‘; pr:]-’
q=11 of p = oo,
;;Ll( i.e., q is such that % + % =), FlaEp< &8

Then if x € IP(N),y € l9(N) and if x — y is defined by (x - Y)pn := Tpn - Yn,n € N,
then z -y € I'(N) and

lz -yl < llzllpllylle-

Armed with this, we can show that || - ||, is a norm for 1 < p < oc.



24 CHAPTER 1. NVS, BS AND MS

Let z,y € IP(N), then

e+ g2 =3 [2n 4 yal? < 3 (lznl + )
n=1

n=1
o0

= (|zn| + |yn)(zZn| + |yn])?
1

n=

8

o
=" l@nl(zn] + [yn))P71 + D lynl(|za] + lya)P 7! =: (*)

n=1 n=1

We know already that = + y € [P.

g = p — 1 (with the convention that
has

Let g be the dual exponent to p. Then
L =0). So, since (|z,n| + |yn|)n € 17, one

(|| + |¥)?™! = (lzn] + |yal)® € 19.

So the Holder inequality applies to () and

oo
Z(lxn| + [yn|)? = Z |zn|(lzn] + |yn|)q + Z |ym|(|2n| + |yn|)q

n=1 n=1 n=1
(Z & |P) 7 (Z(Idnl + lyal)57) 7
n=1 n=1
+ (Z [yn|?) "(Z(lanl + g5

— (U2l + [9l1) (3 (nl + lyal)?)*

n=1

el
(Z("Lnl 2 |yn|)p) L ||~L||p =+ “y”P'

n=1
s

-~

( z (2nl+lwnl)?) ® =llz-+yll,
So [lz +yllp < llzllp + llyllp-
It remains to prove Holder inequality. For this we need

Lemma 4.4 (Young’s inequality). Let 1 < p < oo. Then for all a,b > 0

1 1
ab < —a? + —b9,
p q
1 Y E—
where 5 B 5= 1.

Proof. For some suitable function G, we want to have an inequality of the form

a-b<G(a)+ F(b) Va,b>=0
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for a suitable function F. How to guess F'?
Certainly F' given by

F(b) := sup(ab — G(a)) (%)

works, since then
G(a) + F(b) > G(a) + ab — G(a) = ab.

So we need to find the supremum in (x%). If G(a) = %a” and 1 < p < o0, then
G(0) = 0 and lim, s (ab — G(a)) = —oc so there will be a point a (depending
on b) for which a +» ab — G(a) is maximal.

At this point the derivative

d B . B 55
da(a.b G(a))=b—G'(a)=b—a
must be zero = a = b1/ (P—1),
1 1
s Bbjab—saP e n(h —ab=1
(b) . ( = )
= bF‘l—l(b_ _1_b) o S P lbq
P

with ¢ = F_L1 (|
Proof of Lemma 4.3. Let (zy,)n € P and (y,)n € 19,1 < p < o0, g dual exponent
of p.

The cases p = 1 or p = oo are easy (do them!).

Solet 1 < p < oc.

Step 1: Assume ||z||, = 1 = ||y|lg- Then

|z - ylla < 1.
Indeed,
oC o0
|z -ylls < Z |Znyn| = Z |20 ]|
n=1 n=1

and by Lemma 4.4

IA

oc
1 1

Z (_ll'nlp ik —|yn|q)
n=1 p 4q

1 ] 1 (s
= ;”l’”; + E”yHé

1 1
=—+4—-—=1.

p q

Step 2: Assume x # 0,y # 0. Then

|z - |1 i z Y

lzllpllylly " llzlls Iyl

I =112 -9l
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with & = (T““lfcu,, = (—Ll—ny"l'q ),
Note ||Z]|p, = 1 = ||7|lq- So by Step 1
|z - gl <1,

hence

lz - ylly = llzllpllyllqllz - gl < llzllpllyllq-

Theorem 4.5. The spaces (IP(N), || -||,) are Banach spaces, i.e., they are cc
plete.

Proof. Only completeness remains: we do only 1 < p < oc.
We write x = (z(j))jen € IP(N).

So let (z,)n C IP(N) be Cauchy.

Step 1: A candidate for the limit: Fix 7 € N and consider

o 1
|Tn(.]) — :17771(j)l < (Z lwn(l) = wm(l)lp) = ”‘En - -'17771”1—7
=1
= (,(7))n C F is Cauchy. By completeness of F xz(j) := lim,, o0 x,(J) exis
Step 2: x € [P(N)!
Idea:
o0 o0 o0
il P — N[ B — : W O [ o : Sy P ,
|um—§?uﬁ|—§;g&mum - ¢%§QMMN<an
i= i= Jj=

D e

B[]S

Let L € N. Note that

L

L

rl(3)|1P — i r 2P

> le@IP =3 Jim lan()l
J:

=1
L
= lim inf E 124 ()P
n— oo
i=1
< liminf ||z,||} < oo
n—oo

Thus, using the monotone convergence theorem, we conclude that

oo L

E |lz(5)|P = Llirn E |lz(7)1? < (iminf ||z,]||p)?
— oo

=1 =1

= ||z||p < iminf ||z,||p,

so x € IP!
Step 3: x,, — x in I?: Given £ > 0, there exists

NeN: ||lepn, —zZm|lp<e VYnr,m= N.
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Let L € N.

L L

D_leG) —zn(NIP = lim > |wm () — zn ()P

=1 FJ=1

< lim sup ||$1r1 = ‘T"”z
M —00

< &P for n large enough

= for n > N:

L
lz — nllp = Hm > " |a(j) — xn(d)” < &
i=1

or ||lx — x,||p, < e for all n large enough!

O
5 Hahn-Banach type theorems
5.1 Some preparations
Definition 5.1. Let (X, ||-|lx). (Y, ||-||yv) be normed vector spaces. A continuous

linear map T : X — Y s called operator. If' Y = R or C we call them
Junctionals.

Lemma 5.2. Let X.,Y be normed vector spaces and T : X — Y linear. Then
the following are equivalent (t.f.a.e.):

(a) T is continuous.

(b) T is continuous at 0.

(c) IM = 0: ||Tz|ly £ M||z||xVx € X.
(d) T is uniformly continuous.

Proof. (¢) = (d) = (a) = (b) is easy.
E.g.: (¢) = T is Lipschitz continuous, since

Tz — Tzol|ly = ||T'(z — zo)lly < M|z — zollx-

So we only need to show (b) = (¢). Assume that (¢) is wrong = Vn € Ndz,, €

X : | Tzrlly > nllzn||x = @n # 0. Then
Ty -
Yn = m — 0 in X.
But
ITynlly = ITEnlx
n||zn|lx
so Ty, - 0, so T is not continuous at 0, a contradiction. ]
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Definition 5.3 (Operator-norm). Given T : X — Y linear

NT| := ||IT|| x=y = inf(M = 0|||Tz|y < M||z||x for all x € X)
defines the operator-norm of T.
Note:
Tx
1Tl = sup IZ20Y ooy Ty = sup Tzl
z20 Zllx  jajx=1 llzllx <1
and
I Tz|ly < ||T|[llz|]| Vze X. (I.1)
Indeed, let My := sup,..q ﬂ%
P
ITally = L2 o < My llallx
=]l x
= ||T|| < M.

On the other hand: given £ > 03xz. #£ 0 :
Tz |ly = Mo(1 — &)l|ze|lx

= ||IT|| = Mo(1 —¢) Ye<0

= ||T|| = Mo
and thus ||T|| = My, so (1.1) holds.
Definition 5.4. Let X,Y be normed spaces.
L(X,Y):={T: X = Y|T is linear and continuous}
ts again a vector space.

(S +T)(z) := Sz + Tz,
(AD) ()= 2ADz.
Proposition 5.5. (a) ||T|| = sup) <1 [|T=||y defines a norm on L(X,Y).
(b) If Y is complete, then L(X,Y) is also complete.
Proof. (a) Looking closely reveals

AT = AT

|IT]| =0 =T = 0 (the zero linear map).
Triangle-inequality:

|S+T||= sup |[|[(S+T)x|y
lz|| x <1 S—

=l Sz+Telly

< sup |[Sz|ly + sup ||Tz|y
lzllx <1 =]l x <1

= IS+ ITIl-



5. HAHN-BANACH TYPE THEOREMS 29

(b) Let (T,)» € L(X,Y) be Cauchy = for fixed x € X (T,,x),, is Cauchy in Y'!

”Tn-'E = TmIHY = ”(Tn - Tm)-’””Y = ||Tn — Tm””:’:”.’s’-

By completeness of Y = Tz := lim,, ... T,,x exists.
Step 1: T is linear. Indeed

T(Axy + px2) = lim T, (Axy + pxsa)

TE— OO0 4

e S

AT,y +puT,xz2

= A lim 7T,z +p im T, xo
n—oo

n—soc

= ANT'z; + pT'zo.

Step 2: T € L(X,Y), i.e, ||T|| < cc and ||T — T,|| — 0.
Indeed, let £ > 0 and choose N; € N so that

T — Tl <& VYn,m > N;.
Let z € X, ||z||x < 1. Choose N, := N.(g,z) = N; so that
TNz —Tz|ly <€
Thus, for every x € X with ||z||x < 1:

|Thx —Tx||y < ﬂ‘ﬂlm — TNE.’E"}: +UTN€I — T.'17||y4

——

=I(Th —Tx)zlly SITn —Tr |zl x S| Th —Twv, || =e

< ”Tn - TN,: ” “+&
N’
<e,n>N,

< 2¢ for all n > N,

”T:I‘.”Y < ”Tna: S T‘L“Y S ”Tna:”Y < 2e + ”Tn" < o©

| T —Th|| = sup ||[Tz — Thz|| < 2¢ for all n > N,
[[=]lx =<1

so T, — T in operator norm.

O

Definition 5.6. Given a normed vector space X, its dual space is the space
X'= X* = L(X,F) of continuous linear functionals.

Corollary 5.7. For any normed vector space X, its dual X' equipped with the
norm

|2’llx := sup |2'(z)| = sup |o'(=)|

is a Banach space.
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5.2 The analytic form of Hahn-Banach: extension of lin-
ear functionals

Definition 5.8. Let E be a vector space. A map p: E — R is sub-linear if
(a) p(Az) = Ap(x),VA > 0,Vx € E.
(b) p(z +y) < p(z) +p(y),Vz,y € E.
Example 5.9. (i) Every semi-norm is sub-linear.
(11) Every linear functional on a real vector space is sub-linear.

(i1i) On I>°(N,R) = bounded real-valued sequences, t = (t,,)n +— limsup,, , . tn
is sub-linear.
On l>*(N,C), t = (tn)n — limsup,, , . Re(t,) is sub-linear.

(iv) A sub-linear map is often called Minkowski functional.

Theorem 5.10 (Hahn-Banach, analytic form). Let E be a real vector space,
p: E — R sub-linear, G C E a subspace, and g : G — R a linear functional
with

g(x) < p(x) Vx € G.

Then there exists a linear functional f : E — R which extends g, i.e., g(x) =
f(z) Yx € G, such that

f(z) < p(=x) Yz € E.

For the proof we need Zorn’s lemma, which is an important property of
ordered sets.
Some notations:

e Let P be a set with a partial order relation <. A subset Q C P is totally
ordered if for any a,b € Q either a < b or b < a (or both!) holds.

e Let Q € P, then ¢ € P is an upper bound for Q if a < ¢ for all a € Q.

e We say that m € P is a maximal element of P if there is no element
x € P such that m < x except for x = m.
Note that a maximal element of P need not be an upper bound for P!

e We say that PP is inductive if every totally ordered subset Q C PP has an
upper bound.

Lemma 5.11 (Zorn). Every non-empty ordered set which is inductive has a
maximal element.

Proof of Theorem 5.10. We say that h extends g if
D(h) D D(g) and h(x) = g(x)Vx € D(g).
Consider the set

h:FE > D(h) —R| D(h)is a linear subspace of E,
P= h is linear, G C D(h), h extends g.
h(zx) < p(x) Vz e D(h)
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Note: P # () since g € P!

On P we define the order hy < ho <= ho extends h;.

Step 1: P is inductive.

Indeed, let Q C P be totally ordered. Write Q = (h;);cs and set

D(h) := U D(h;), h(x):= hi(z) if x € D(h;) for some i € I.
el

It is easy to see that this definition is consistent and that A is an upper bound
for Q.

Step 2: By Step 1 and Zorn’s lemma, P has a maximal element f € P.

Claim: D(f) = E (which finishes the proof).

Assume that D(f) # E. Let zog € D(f) and set D(h) := D(f) + Rz and for
x € D(f) set

h(z + tzp) := f(z) +ta, tE€R,
where we will choose a so that h € P. For this we need
(@) + ta < plz + txo). (L.2)
Let £ > 0. Then
(L2) <= ta < p(z + tzo) — f(x)
= @ %p(.’lﬁ + tzp) — %f('r)
= p(Z +20) — £(3)
= p(u +z0) — [(u),

where u :=
If t < 0, the

- (..,|;_.;

1
(I.2) <= ta < p(x+ txg) — f(x)
— —a< _itp(x + txg) — _itf(l')
= p(=; +20) — F(5)

= p(w + xo) — f(w)
— a = f(w) — p(w — x0),
where w = _it
Thus (1.2) holds if
F(w) —p(w —x0) < a < p(u+x0) — f(u) Vu,w € D(f). (I.3)
Since [ € P, we have
f(x) < p(x) Ve D(f).
Hence Vu,w € D(f) it holds
f(u) + f(w) = f(u+w)
< p(u + w)
= p(u+ zop +w — xp)
< p(u + zo) + p(w — zg)
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