

جامعة الانبار

كلية التربية للعلوم الصرفة

قسم الرياضيات / ماجستير

مقرر: التحليل الدالي

المحاضرة الاولى (3)

(المصدر)

Lectures Notes in Functinoal Analysis WS 2012 – 2013

4 The sequence spaces $l^p(\mathbb{N}), 1 \leq p \leq \infty$

Definition 4.1. • $l^{\infty}(\mathbb{N})$ is the space of all bounded sequences $x : \mathbb{N} \to \mathbb{F}$ equipped with the norm

$$||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|.$$

• Let $1 \leq p < \infty$. $l^p(\mathbb{N})$ is the space of all sequences $x : \mathbb{N} \to \mathbb{F}$ for which $\sum_{n \in \mathbb{N}} |x_n|^p < \infty$. With

$$||x||_p := \left(\sum_{n \in \mathbb{N}} |x_n|^p\right)^{\frac{1}{p}}$$

it becomes a normed vector space.

Lemma 4.2. Let $1 \leq p \leq \infty$. Then $(l^p(\mathbb{N}), ||\cdot||_p)$ is a normed vector space.

Proof. Case 1: $p = \infty$ should be immediate.

Case 2: $1 \leq p < \infty$ is more complicated. It is not even obvious why $(l^p, \|\cdot\|_p)$ is a vector space. If $x \in l^p$ and $\alpha \in \mathbb{F}$, then $\alpha x \in l^p$ is clear, but if $x, y \in l^p(\mathbb{N})$ why is $x + y \in l^p(\mathbb{N})$?

Let $x, y \in l^p(\mathbb{N})$, i.e., $||x||_p, ||y||_p < \infty$. Then

$$\sum_{n=1}^{\infty} |x_n + y_n|^p \le \sum_{n=1}^{\infty} (2\max(|x_n|, |y_n|))^p$$

$$= 2^p \sum_{n=1}^{\infty} \max(|x_n|, |y_n|) \le 2^p (\sum_{n=1}^{\infty} |x_n|^p + \sum_{n=1}^{\infty} |y_n|^p) < \infty$$

so $x + y \in l^p(\mathbb{N})$.

To show that $\|\cdot\|_p$ is a norm, we only have to check the triangle-inequality and for this we need some more help.

Lemma 4.3 (Hölder inequality). Let $1 \le p \le \infty$ and define the **dual exponent** $q \in [1, \infty]$ by

$$q = \begin{cases} \infty, & \text{if } p = 1, \\ 1, & \text{if } p = \infty, \\ \frac{p}{p-1}(\text{ i.e., } q \text{ is such that } \frac{1}{p} + \frac{1}{q} = 1), & \text{if } 1$$

Then if $x \in l^p(\mathbb{N}), y \in l^q(\mathbb{N})$ and if x - y is defined by $(x \cdot y)_n := x_n \cdot y_n, n \in \mathbb{N}$, then $x \cdot y \in l^1(\mathbb{N})$ and

$$||x \cdot y||_1 \le ||x||_p ||y||_q$$
.

Armed with this, we can show that $\|\cdot\|_p$ is a norm for $1 \leq p \leq \infty$.

Let $x, y \in l^p(\mathbb{N})$, then

$$||x+y||_p^p = \sum_{n=1}^{\infty} |x_n + y_n|^p \le \sum_{n=1}^{\infty} (|x_n| + |y_n|)^p$$

$$= \sum_{n=1}^{\infty} (|x_n| + |y_n|)(|x_n| + |y_n|)^{p-1}$$

$$= \sum_{n=1}^{\infty} |x_n|(|x_n| + |y_n|)^{p-1} + \sum_{n=1}^{\infty} |y_n|(|x_n| + |y_n|)^{p-1} =: (\star)$$

We know already that $x+y\in l^p$. Let q be the dual exponent to p. Then $\frac{p}{q}=p-1$ (with the convention that $\frac{1}{\infty}=0$). So, since $(|x_n|+|y_n|)_n\in l^p$, one has

$$(|x_n| + |y_n|)^{p-1} = (|x_n| + |y_n|)^{\frac{p}{q}} \in l^q.$$

So the Hölder inequality applies to (\star) and

$$\sum_{n=1}^{\infty} (|x_n| + |y_n|)^p = \sum_{n=1}^{\infty} |x_n| (|x_n| + |y_n|)^{\frac{p}{q}} + \sum_{n=1}^{\infty} |y_n| (|x_n| + |y_n|)^{\frac{p}{q}}$$

$$\leq \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} (|x_n| + |y_n|)^{\frac{p}{q} \cdot q}\right)^{\frac{1}{q}}$$

$$+ \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} (|x_n| + |y_n|)^{\frac{p}{q} \cdot q}\right)^{\frac{1}{q}}$$

$$= (||x||_p + ||y||_p) \left(\sum_{n=1}^{\infty} (|x_n| + |y_n|)^p\right)^{\frac{1}{q}}$$

$$\Rightarrow \underbrace{\left(\sum_{n=1}^{\infty} (|x_n| + |y_n|)^p\right)^{1 - \frac{1}{q}}}_{\left(\sum_{n=1}^{\infty} (|x_n| + |y_n|)^p\right)^{\frac{1}{p}} = ||x + y||_p}$$

So
$$||x + y||_p \le ||x||_p + ||y||_p$$
.

It remains to prove Hölder inequality. For this we need

Lemma 4.4 (Young's inequality). Let $1 . Then for all <math>a, b \ge 0$

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q,$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. For some suitable function G, we want to have an inequality of the form

$$a \cdot b \le G(a) + F(b) \quad \forall a, b \ge 0$$

25

for a suitable function F. How to guess F? Certainly F given by

$$F(b) := \sup_{a>0} (ab - G(a)) \tag{**}$$

works, since then

$$G(a) + F(b) \ge G(a) + ab - G(a) = ab.$$

So we need to find the supremum in $(\star\star)$. If $G(a) = \frac{1}{p}a^p$ and 1 , then <math>G(0) = 0 and $\lim_{a \to \infty} (ab - G(a)) = -\infty$ so there will be a point a (depending on b) for which $a \mapsto ab - G(a)$ is maximal.

At this point the derivative

$$\frac{d}{da}(ab - G(a)) = b - G'(a) = b - a^{p-1}$$

must be zero $\Rightarrow a = b^{1/(p-1)}$.

$$\begin{split} \Rightarrow F(b) &= ab - \frac{1}{p}a^p = a(b - \frac{1}{p}a^{p-1}) \\ &= b^{\frac{1}{p-1}}(b - \frac{1}{p}b) = b^{\frac{p}{p-1}}\frac{p}{p-1} = \frac{1}{q}b^q \end{split}$$

with $q = \frac{p}{p-1}$.

Proof of Lemma 4.3. Let $(x_n)_n \in l^p$ and $(y_n)_n \in l^q$, $1 \le p \le \infty$, q dual exponent of p.

The cases p = 1 or $p = \infty$ are easy (do them!).

So let 1 .

Step 1: Assume $||x||_p = 1 = ||y||_q$. Then

$$||x \cdot y||_1 \le 1.$$

Indeed,

$$||x \cdot y||_1 \le \sum_{n=1}^{\infty} |x_n y_n| = \sum_{n=1}^{\infty} |x_n| |y_n|$$

and by Lemma 4.4

$$\leq \sum_{n=1}^{\infty} \left(\frac{1}{p} |x_n|^p + \frac{1}{q} |y_n|^q \right)$$

$$= \frac{1}{p} ||x||_p^p + \frac{1}{q} ||y||_q^q$$

$$= \frac{1}{p} + \frac{1}{q} = 1.$$

Step 2: Assume $x \neq 0, y \neq 0$. Then

$$\frac{\|x \cdot y\|_1}{\|x\|_p \|y\|_q} = \|\frac{x}{\|x\|_p} \cdot \frac{y}{\|y\|_q}\|_1 = \|\tilde{x} \cdot \tilde{y}\|_1$$

with
$$\tilde{x} = \left(\frac{x_n}{\|x\|_p}\right)_n$$
, $\tilde{y} = \left(\frac{y_n}{\|y\|_q}\right)_n$.
Note $\|\tilde{x}\|_p = 1 = \|\tilde{y}\|_q$. So by Step 1

$$\|\tilde{x}\cdot\tilde{y}\|_1\leq 1,$$

hence

$$||x \cdot y||_1 = ||x||_p ||y||_q ||\tilde{x} \cdot \tilde{y}||_1 \le ||x||_p ||y||_q.$$

Theorem 4.5. The spaces $(l^p(\mathbb{N}), \|\cdot\|_p)$ are Banach spaces, i.e., they are coplete.

Proof. Only completeness remains: we do only $1 \le p < \infty$.

We write $x = (x(j))_{j \in \mathbb{N}} \in l^p(\mathbb{N})$.

So let $(x_n)_n \subset l^p(\mathbb{N})$ be Cauchy.

Step 1: A candidate for the limit: Fix $j \in \mathbb{N}$ and consider

$$|x_n(j) - x_m(j)| \le \left(\sum_{l=1}^{\infty} |x_n(l) - x_m(l)|^p\right)^{\frac{1}{p}} = ||x_n - x_m||_p$$

 $\Rightarrow (x_n(j))_n \subset \mathbb{F}$ is Cauchy. By completeness of \mathbb{F} $x(j) := \lim_{n \to \infty} x_n(j)$ exis $\underbrace{\text{Step 2:}}_{\text{Idea:}} x \in l^p(\mathbb{N})!$

$$||x||_p^p = \sum_{j=1}^{\infty} |x(j)|^p = \sum_{j=1}^{\infty} \lim_{n \to \infty} |x_n(j)|^p = \lim_{n \to \infty} \sum_{j=1}^{\infty} |x_n(j)|^p < \infty.$$

Let $L \in \mathbb{N}$. Note that

$$\sum_{j=1}^{L} |x(j)|^p = \sum_{j=1}^{L} \lim_{n \to \infty} |x_n(j)|^p$$

$$= \lim_{n \to \infty} \inf_{j=1}^{L} |x_n(j)|^p$$

$$\leq \lim_{n \to \infty} \inf_{j=1} ||x_n||_p^p < \infty$$

Thus, using the monotone convergence theorem, we conclude that

$$\sum_{j=1}^{\infty} |x(j)|^p = \lim_{L \to \infty} \sum_{j=1}^{L} |x(j)|^p \le (\liminf ||x_n||_p)^p$$

$$\Rightarrow ||x||_p \le \liminf ||x_n||_p,$$

so $x \in l^p!$

Step 3: $x_n \to x$ in l^p : Given $\varepsilon > 0$, there exists

$$N \in \mathbb{N} : ||x_n - x_m||_p < \varepsilon \quad \forall n, m \ge N.$$

Let $L \in \mathbb{N}$.

$$\sum_{j=1}^{L} |x(j) - x_n(j)|^p = \lim_{m \to \infty} \sum_{j=1}^{L} |x_m(j) - x_n(j)|^p$$

$$\leq \limsup_{m \to \infty} ||x_m - x_n||_p^p$$

$$\leq \varepsilon^p \text{ for } n \text{ large enough}$$

 \Rightarrow for n > N:

$$||x - x_n||_p^p = \lim_{L \to \infty} \sum_{j=1}^L |x(j) - x_n(j)|^p \le \varepsilon^p$$

or $||x - x_n||_p \le \varepsilon$ for all n large enough!

5 Hahn-Banach type theorems

5.1 Some preparations

Definition 5.1. Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be normed vector spaces. A continuous linear map $T: X \to Y$ is called **operator**. If $Y = \mathbb{R}$ or \mathbb{C} we call them functionals.

Lemma 5.2. Let X, Y be normed vector spaces and $T: X \to Y$ linear. Then the following are equivalent (t.f.a.e.):

- (a) T is continuous.
- (b) T is continuous at 0.
- (c) $\exists M \geq 0 : ||Tx||_Y \leq M||x||_X \forall x \in X$.
- (d) T is uniformly continuous.

Proof. $(c) \Rightarrow (d) \Rightarrow (a) \Rightarrow (b)$ is easy.

E.g.: $(c) \Rightarrow T$ is Lipschitz continuous, since

$$||Tx - Tx_0||_Y = ||T(x - x_0)||_Y \le M||x - x_0||_X.$$

So we only need to show $(b) \Rightarrow (c)$. Assume that (c) is wrong $\Rightarrow \forall n \in \mathbb{N} \exists x_n \in X : ||Tx_n||_Y > n||x_n||_X \Rightarrow x_n \neq 0$. Then

$$y_n := \frac{x_n}{n||x_n||_X} \to 0 \text{ in } X.$$

But

$$||Ty_n||_Y = \frac{||Tx_n||_X}{n||x_n||_X} > 1$$

so $Ty_n \nrightarrow 0$, so T is not continuous at 0, a contradiction.

Definition 5.3 (Operator-norm). Given $T: X \to Y$ linear

$$||T|| := ||T||_{X \to Y} := \inf(M \ge 0 ||Tx||_Y \le M ||x||_X \text{ for all } x \in X)$$

defines the operator-norm of T.

Note:

$$||T|| = \sup_{x \neq 0} \frac{||Tx||_Y}{||x||_X} = \sup_{||x||_X = 1} ||Tx||_Y = \sup_{||x||_X \le 1} ||Tx||_Y.$$

and

$$||Tx||_Y \le ||T|| ||x|| \quad \forall x \in X.$$
 (I.1)

Indeed, let $M_0 := \sup_{x \neq 0} \frac{\|Tx\|_Y}{\|x\|_X}$

$$||Tx||_Y = \frac{||Tx||_Y}{||x||_X} ||x||_X \le M_0 ||x||_X$$

$$\Rightarrow ||T|| \leq M_0.$$

On the other hand: given $\varepsilon > 0 \exists x_{\varepsilon} \neq 0$:

$$||Tx_{\varepsilon}||_{Y} \ge M_{0}(1-\varepsilon)||x_{\varepsilon}||_{X}$$

$$\Rightarrow ||T|| \ge M_{0}(1-\varepsilon) \quad \forall \varepsilon < 0$$

$$\Rightarrow ||T|| \ge M_{0}$$

and thus $||T|| = M_0$, so (I.1) holds.

Definition 5.4. Let X, Y be normed spaces.

$$L(X,Y) := \{T : X \to Y | T \text{ is linear and continuous} \}$$

is again a vector space.

$$(S+T)(x) := Sx + Tx,$$
$$(\lambda T)(x) := \lambda Tx.$$

Proposition 5.5. (a) $||T|| = \sup_{||x||_X \le 1} ||Tx||_Y$ defines a norm on L(X, Y).

(b) If Y is complete, then L(X,Y) is also complete.

Proof. (a) Looking closely reveals

$$\|\lambda T\| = |\lambda| \|T\|$$

$$||T|| = 0 \Rightarrow T = 0$$
 (the zero linear map).

Triangle-inequality:

$$\begin{split} \|S+T\| &= \sup_{\|x\|_X \le 1} \underbrace{\|(S+T)x\|_Y}_{=\|Sx+Tx\|_Y} \\ &\leq \sup_{\|x\|_X \le 1} \|Sx\|_Y + \sup_{\|x\|_X \le 1} \|Tx\|_Y \\ &= \|S\| + \|T\|. \end{split}$$

(b) Let $(T_n)_n \subset L(X,Y)$ be Cauchy \Rightarrow for fixed $x \in X$ $(T_nx)_n$ is Cauchy in Y!

$$||T_n x - T_m x||_Y = ||(T_n - T_m)x||_Y \le ||T_n - T_m|| ||x||_X.$$

By completeness of $Y \Rightarrow Tx := \lim_{n\to\infty} T_n x$ exists. Step 1: T is linear. Indeed

$$T(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} \underbrace{T_n(\lambda x_1 + \mu x_2)}_{\lambda T_n x_1 + \mu T_n x_2}$$
$$= \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2$$
$$= \lambda T x_1 + \mu T x_2.$$

Step 2: $T \in L(X, Y)$, i.e., $||T|| < \infty$ and $||T - T_n|| \to 0$. Indeed, let $\varepsilon > 0$ and choose $N_1 \in \mathbb{N}$ so that

$$||T_n - T_m|| < \varepsilon \quad \forall n, m \ge N_1.$$

Let $x \in X$, $||x||_X \le 1$. Choose $N_{\varepsilon} := N_{\varepsilon}(\varepsilon, x) \ge N_1$ so that

$$||T_{N_{\varepsilon}}x - Tx||_{Y} \le \varepsilon$$

Thus, for every $x \in X$ with $||x||_X \le 1$:

$$\begin{split} \|T_{n}x - Tx\|_{Y} &\leq \underbrace{\|T_{n}x - T_{N_{\varepsilon}}x\|_{Y}}_{=\|(T_{n} - T_{N_{\varepsilon}})x\|_{Y} \leq \|T_{n} - T_{N_{\varepsilon}}\|} + \underbrace{\|T_{N_{\varepsilon}}x - Tx\|_{Y}}_{\leq \varepsilon} \\ &\leq \underbrace{\|T_{n} - T_{N_{\varepsilon}}\|}_{\leq \varepsilon, n \geq N_{1}} + \varepsilon \\ &\leq 2\varepsilon \text{ for all } n > N_{1} \end{split}$$

$$||Tx||_{Y} \le ||T_{n}x - Tx||_{Y} + ||T_{n}x||_{Y} \le 2\varepsilon + ||T_{n}|| < \infty$$

$$||T - T_{n}|| = \sup_{\|x\|_{X} \le 1} ||Tx - T_{n}x|| \le 2\varepsilon \text{ for all } n \ge N_{1},$$

so $T_n \to T$ in operator norm.

Definition 5.6. Given a normed vector space X, its **dual** space is the space $X' = X^* := L(X, \mathbb{F})$ of continuous linear functionals.

Corollary 5.7. For any normed vector space X, its dual X' equipped with the norm

$$||x'||_{X'} := \sup_{||x||_X \le 1} |x'(x)| = \sup_{||x||_X = 1} |x'(x)|$$

is a Banach space.

5.2 The analytic form of Hahn-Banach: extension of linear functionals

Definition 5.8. Let E be a vector space. A map $p: E \to \mathbb{R}$ is sub-linear if

- (a) $p(\lambda x) = \lambda p(x), \forall \lambda \ge 0, \forall x \in E$.
- (b) $p(x+y) \le p(x) + p(y), \forall x, y \in E$.

Example 5.9. (i) Every semi-norm is sub-linear.

- (ii) Every linear functional on a real vector space is sub-linear.
- (iii) On $l^{\infty}(\mathbb{N}, \mathbb{R}) = bounded \ real-valued \ sequences, \ t = (t_n)_n \mapsto \lim \sup_{n \to \infty} t_n$ is sub-linear. On $l^{\infty}(\mathbb{N}, \mathbb{C}), \ t = (t_n)_n \mapsto \lim \sup_{n \to \infty} Re(t_n)$ is sub-linear.
- (iv) A sub-linear map is often called Minkowski functional.

Theorem 5.10 (Hahn-Banach, analytic form). Let E be a real vector space, $p: E \to \mathbb{R}$ sub-linear, $G \subset E$ a subspace, and $g: G \to \mathbb{R}$ a linear functional with

$$g(x) \le p(x) \quad \forall x \in G.$$

Then there exists a linear functional $f: E \to \mathbb{R}$ which extends g, i.e., $g(x) = f(x) \ \forall x \in G$, such that

$$f(x) \le p(x) \quad \forall x \in E.$$

For the proof we need Zorn's lemma, which is an important property of ordered sets.

Some notations:

- Let P be a set with a partial order relation \leq . A subset $Q \subset P$ is **totally ordered** if for any $a, b \in Q$ either $a \leq b$ or $b \leq a$ (or both!) holds.
- Let $Q \subset P$, then $c \in P$ is an **upper bound** for Q if $a \leq c$ for all $a \in Q$.
- We say that $m \in P$ is a **maximal element** of P if there is no element $x \in P$ such that $m \le x$ except for x = m. Note that a maximal element of P need not be an upper bound for P!
- We say that P is **inductive** if every totally ordered subset $Q \subset P$ has an upper bound.

Lemma 5.11 (Zorn). Every non-empty ordered set which is inductive has a maximal element.

Proof of Theorem 5.10. We say that h extends g if

$$D(h) \supset D(g)$$
 and $h(x) = g(x) \ \forall x \in D(g)$.

Consider the set

$$P = \left\{ \begin{array}{c} h: E \supset D(h) \to \mathbb{R}| & D(h) \text{ is a linear subspace of } E, \\ h \text{ is linear, } G \subset D(h), h \text{ extends } g, \\ h(x) \le p(x) & \forall x \in D(h) \end{array} \right\}.$$

Note: $P \neq \emptyset$ since $g \in P!$

On P we define the order $h_1 \leq h_2 \iff h_2$ extends h_1 .

Step 1: P is inductive.

Indeed, let $Q \subset P$ be totally ordered. Write $Q = (h_i)_{i \in I}$ and set

$$D(h) := \bigcup_{i \in I} D(h_i), \quad h(x) := h_i(x) \text{ if } x \in D(h_i) \text{ for some } i \in I.$$

It is easy to see that this definition is consistent and that h is an upper bound for Q.

Step 2: By Step 1 and Zorn's lemma, P has a maximal element $f \in P$.

Claim: D(f) = E (which finishes the proof).

Assume that $D(f) \neq E$. Let $x_0 \notin D(f)$ and set $D(h) := D(f) + \mathbb{R}x_0$ and for $x \in D(f)$ set

$$h(x+tx_0) := f(x) + t\alpha, \quad t \in \mathbb{R},$$

where we will choose α so that $h \in P$. For this we need

$$f(x) + t\alpha \le p(x + tx_0). \tag{I.2}$$

Let t > 0. Then

(I.2)
$$\iff t\alpha \le p(x + tx_0) - f(x)$$

 $\iff \alpha \le \frac{1}{t}p(x + tx_0) - \frac{1}{t}f(x)$
 $= p(\frac{x}{t} + x_0) - f(\frac{x}{t})$
 $= p(u + x_0) - f(u),$

where $u := \frac{x}{t}$. If t < 0, then

(I.2)
$$\iff t\alpha \leq p(x + tx_0) - f(x)$$

 $\iff -\alpha \leq \frac{1}{-t}p(x + tx_0) - \frac{1}{-t}f(x)$
 $= p(\frac{x}{-t} + x_0) - f(\frac{x}{-t})$
 $= p(w + x_0) - f(w)$
 $\iff \alpha \geq f(w) - p(w - x_0),$

where $w := \frac{x}{-t}$.

Thus (I.2) holds if

$$f(w) - p(w - x_0) \le \alpha \le p(u + x_0) - f(u) \quad \forall u, w \in D(f).$$
 (I.3)

Since $f \in P$, we have

$$f(x) \le p(x) \quad \forall x \in D(f).$$

Hence $\forall u, w \in D(f)$ it holds

$$f(u) + f(w) = f(u + w)$$

$$\leq p(u + w)$$

$$= p(u + x_0 + w - x_0)$$

$$\leq p(u + x_0) + p(w - x_0)$$