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6. THE BAIRE CATEGORY THEOREM AND ITS APPLICATIONS 41

(1) 0 <gn £ %En_l, in particular =,, < 27 "¢

(2) Be(zn) C B2e, (%) €T OnN B, ,(Tn-1) C - C 01 NO2...0, N B:(x0)
for all n € N. In particular, x,, C B, (xn) C By-~.(xg) for all n > N.

= (xn)n is Cauchy, M is complete, so r = limz,, € M exists
= x € Bexr(xn) VN € N.
So DN B(xp) # O Ve > 0,29 € M, so D is dense in M. O

Corollary 6.4 (Baire). Let M be a complete metric space, (F, ), € M closed
such that M = UnEN F,,. Then there exists ng € N : intF,,, # 0. So a complete
melric space is nol meager.

Proof. F, is closed. If intF,, = (), by Theorem 6.2(a), F' = |J,,cy Fn has empty
interior, so M = F has empty interior, but AM° = int(M) = M, a contradiction.
O

6.2 Application I: The set of discontinuities of a limit of
continuous functions

Theorem 6.5. Assume that (f,), : M — C are continuous, M is complete
metric space and

f@) = lim_ fo(2)

exists for all x € M. Then the set of points where f is discontinuous is (at
most) meager. In other words, the set of points where f is continuous is the
complement of a meager set, in particular it is dense.

Proof. Let D = set of discontinuities of f. The oscillations of the function f at
a point x are

ose(f)(x) = lim w(f)(r.x) = inf w(f)(r.x)

with w(f)(r, x) := sup,, .ep, () |f(¥) — f(2)| (which is decreasing in 7).
So osc(f)(x) < £ <= 3 ball B centered at = with |f(y) — f(2)| < e Vz,y € B.
Note also

osc(f)(x) =0 <« f is continuous at x (1.9)

Ve >0 FE.:={x € M|osc(f)(xz) < £} is open (1.10)
(I.9) is immediate and for (I.10) note that if x € E_. there exists r > 0 with

sup  |f(y) — f(2)| <e.
y,2z€ B, (x)

So if & € Bz (x) then & € E: since Bg(7) C B:(x) and hence

sup )If(y) —f(z)| = sup )If(y) —f(z)l <e

y,zeBi_ (= y.zeEB. (x

Thus Bg (z) € E., so E. is open.
We need one more
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Lemma 6.6. Let (f,), be a sequence of continuous functions on a complete
metric space M and f,(x) — f(x) Vo € M. Then given any open ball B C M
and e > 0, there exist an open ball By C B and m € N such that | f,,(z)— f(x)]| <
eVx € By.

Proof. Let Y be a closed ball in M and recall that Y is itself a complete metric
space. Define

E; :={x € Y| sup |f;(z) — fr(z)| < &}
7.k=1

- ﬂ iz e Y| |f;(x) — fi(x)| < e} .

J.k=1

closed since f,, is continuous

o0
So E; is closed and since f,,(z) — f(x) Vz € M we have Y = |J E;.
=1
By Corollary 6.4 applied to Y, some set, say FE,,, must contain an open ball B.

But then

sup |f;j(z) — fu(z)| <e Vx € By
Jk>1

and letting &£ — oo one sees

|fn1(-'17) = fk(T)I <e Vzxe Bo.

To finish the proof of Theorem 6.5 define
Fp := {z € Mlosc(f)(z) = %},

So F, = E5 (from (I1.10)) so F, is closed and D = |J,,cy Fn is the set of
discontinuities of F::

Final claim: Each Fj,, is nowhere dense!

Indeed, if not, let B be open ball with B C F;,. Then setting € = 11;; in Lemma
6.6, we get an open ball By € B and m € N such that

1
fm is continuous = 3 ball B’ € By such that

1

y) — < — WV %
|fm(y) = fm(2)| < = Vy,2€ B
Then
lf(y) = f(z)l = If(y) = fm.(y)l =+ |f771(y) R f77l(z)| ok If‘l‘ll(z) == f(Z)|
1,1 .1 & 1 :

i an e R R EE CBCFy:

So if ' is the center of B’ then

=

osc(f)(x") < %

which contradicts ' € F},! =)
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6.3 Application II: Continuous but nowhere differentiable
functions

Consider the complete metric space C([0, 1]) with norm || f{|o 1= sup,¢(o,1) [ f(2)]
and metric d(f,g) = || f — 9|loc-

Theorem 6.7. The set of functions in C'([0, 1]) which are nowhere differentiable
is generic (in particular, it is dense!).

Proof. Let D = set of functions f € C([0,1]) which are differentiable at at least
one point. We have

I U jf € C([0,1])|3z* € [0,1] : Vz € [0, 1]|f(x) — f(z™)| < N|xz — z*|}
NeN

N
_—_:EN

(1.11)
Claim:
(a) Exn is closed.
(b) E'n is nowhere dense, i.e., it has empty interior.
Then Theorem 6.2 yields the claim.

Proof of (a). Let {f,} € Enx with f,, — f. Let x}, be the point for which (1.11)
holds with f replaced by f,. [0,1] is compact = 3(x}, ) which converges to a
limit z* € [0,1]. Then

|f(z) = f(2")] < |f(®) = friu (@)] + | fri (@) = Fr (@5)] + | fri (27) = f(27)]-

(I.12)
Since || fn — flloe — 0, for € > 0 3K such that
Vk> K |f(2) = far (@) <5 and |fu (") = f@)] < 3.
For the middle term in (I.12) note that f,,, € FEx so
| frn (&) — fri (") < | fra (@) — fra(@n )| + | frn (20,) — Frn (@)
< Nz — z}, | + Nlz}, — "]
and so
|f(x) — f(&")| < e+ Nl|z — 2, | + Nlz;,, — 27|
—e+|lz—a |+ N-0 ask — oo.
(]

Proof of (b). Let P < C([0, 1]) be the subspace of all continuous piecewise linear
functions. For 0 < M let Py € P be the set of continuous piecewise linear
functions with slope = M or < —M. Think of Py as the set of "zig-zag“
functions!

Key fact: Ppyy N Exy =0 if M > N!

Lemma 6.8. VM > 0 Py is dense in C([0,1]).
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Now we finish the proof that Ex has no interior points: Let f € Exn and
e > 0. Fix M > N, then 3h € Py with ||f — k|| < € and h ¢ Exn since
Py N Ex = ® when M > N. So no open ball around f is entirely contained in
FE, , i.e., En has no interior. |

Proof of Lemma 6.8. Step 1: P is dense in C([0,1]): Let f € C([0,1]). Then
[ is uniformly continuous, since [0, 1] is compact. So there exists g € P with
|| f — g|l < e. Indeed, since f is uniformly continuous 34 > 0 such that

|f(@) = f)| <e V|e-—y|<d

Choose n € N such that ,—11 < 0 and let g be the piecewise linear function on

each interval [£ EEl] k= 0,...,n — 1 with g(£) := f(£), g(&E2) = f(EH)

and linearly interpolated in between. Then ||f — g < &!
Step 2: Py is dense in P: Let g(x) =azx +bfor 0 <z < % and

pe(x) =9g(x) +e, Ye(z)=g9(x)—¢.

Begin at g(0), travel a slope +M until you intersect .. Reverse direction and
travel on a line segment of slope —M until you intersect .. This yields a
function h € Py; with

1

Ye(z) S h(z) S pe(zx) VOL<z< —
n

SO
. 1
lg(z) — h(z)| < e in [0, ;]

Then begin at h(%) and repeat the argument on the interval [% %] and continue
in this fashion.
= get a function h € Py with ||g — k|| < e. So ||f — h| < 2 O

O

6.4 Application III: The uniform boundedness principle

Recall: Let FE,F be normed vector spaces. L(F,F) = vector space of all
bounded linear operators 7' : E£ — F with the norm ||T|| := sup,cp |z <1 | TZ]-

Theorem 6.9 (Banach-Steinhaus uniform boundedness principle). Let E be a
Banach space and F be a normed vector space, (T;)icr be a family (not neces-
sarily countable) of continuous linear operators, T; € L(E,F) Vi € I. Assume
that

sup ||T;z|| < co Vx € E. (1.13)
el
Then
sup | T3] < oo, (1.14)
iel

t.e.; IC < oo ¢ || Tiz|| < C|lz|| Ve € B, Yie 1.
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Remark 6.10. The conclusion of Theorem 6.9 is quite remarkable and surpris-
ing. Just having the pointwise estimate sup, ¢ ||T;x|| we get sup;c;sup <1 | Ziz||
00.

Proof. ¥n € N let
F, :={x € E\Vi € I, ||T:z|| < n}.

F,, is closed and UnGN F,, = E. By Corollary 6.4 = Im € N : intF,, # . Then
dxg € Fpn,m > 0, B.(xg) C Fy- Then

ITi(zo+7-2)| <m, |lzll<1

1 1
= | T:(2)|| = ;IITi(TZ)Il = ;IITvz(ﬂfo + 7z) — Ti(xo) ||
2m

1 1
~ |Ti@o + r2)l| += [ Ti(@o)l < == Vz € B, |lz] < 1.

<m <m

(]

Corollary 6.11. Let E, F be Banach spaces, (T,,)n, C L(E,F) such that for
Vr € E,T,x converges and let T'x : lim,, .o T,x. Then

(a) suppen 1Tl < oo.

(b) T € L(E, F).

(c) |T|| < lminf, oo |T0l-

Proof. (a) Follows from Theorem 6.9 immediately.
(b) Also follows from Theorem 6.9 immediately.
(c)

| Tz|| « [[Tnz| < Cllz|| Vz € E

1Tz|| = | Tnell < [Tl

|7|| < liminf |75, ||
O

Corollary 6.12. Let B C G and G be a normed vector space (not necessarily
complete). Then the following are equivalent

(a) B is bounded.

(b) f(B) is bounded for ¥Vf € G*.
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Proof. (a) = (b) is obvious.
(b) = (a): Recall that G* is a Banach space.
For x € B and f € G* let T,.(f) := f(x), T.(f) is linear and bounded, because

sup  |T()| < [lzll[[f1l < ll=|l-
FEGx | fll=1

By Theorem 6.9 and (b) with £ = G*, F = F and I = B, we conclude
I1T=(NIl < ClfIl Vre B,VfeG™.

Then for Vo € B

lzll = sup [f(z)l= sup |T:(f)| < Clz].
FeG=.lIflI<1 feG|IflI<1

O

Notation: (z,), C FE converges weakly to z € E (z, — z) if Vf € E* it
holds f(x,) — f(x).

Corollary 6.13. Weakly convergent sequences are bounded.

Proof. If (x,,)n converges weakly, then for any f € E*, (f(x,))n is bounded.
The result follows from Corollary 6.12. O

Corollary 6.14 (Statement dual to 6.12). Let G be a Banach space and B* C
G™. Then the following are equivalent

(a) Vx € G the set B*(x) := {f(x)|f € B*} is bounded.

(b) B~ is bounded.

Proof. (b) = (a) is obvious (M, || f|| < M Vf € B*).

(a) = (b): We apply Theorem 6.9 with £ = G,F = F,I = B*. For every

f € B* we set Tf(x) := f(x), x € G. Due to (a) and Theorem 6.9 IC < occ
If(@)] = |Ty(z)| < Cllzll Vfe B ,zed.

By definition

Ifll= sup |f(z)|<C VfeB,

z€F,|z||<1

i.e., B™* is bounded. O

6.5 Application IV: The Open Mapping and the Closed
Graph theorems

Theorem 6.15 (Open Mapping). Let E, F be Banach spaces and T € L(E, F)

be surjective. Then there exists C' > 0 such that

T(Bf(0)) > BE(0). (L.15)
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Remark 6.16. Property (1.15) ensures that the image under T' of any open set
in E is open in F.

Indeed, let U be open in E. Fix yo € T(U) so yo = Txo,xz9 € U. Let 19 > 0
be such that B, ,(xo) C U. Due to Theorem 6.15 it holds T(B,,(0)) D> B¢, (0)
(use linearity).

o

BC"‘O (yO) = Yo + BC"‘O (O) < T(:lfo) ¥ T(B"o (0))
- T(‘TO o B"'o (O)) - T(B"o (IO))
N—

cuU
= T (U) is open.

Corollary 6.17. Let E, F be Banach spaces, T € L(E, F) bijective (i.e., injec-
tive and surjective). Then T—' € L(F, E).

Proof. Obviously, 7! exists and it is linear. By (1.15)

=1 BE ) S5 T BE(0)

= BF(0) > T B.(0).

Soifye F,||lyll <C = T ' (»)| <1

1
= |17 y|| < =, < |
1Tyl < &> vl =
1T~ < 1.
O
Corollary 6.18. Let E be a wvector space with two norms || - |[1.]| - ||2 and

assume that E is complete w.r.t. either norm and there exists C' > 0 such that
|z||l2 < Cllz||1 YV € E. Then the two norms are equivalent, i.e., there exists
C1 > 0 such that ||z||1 < Ci||z||2 V= € E.

Proof. Apply Corollary 6.17 with E = (E, || - [|1), F = (E,]|| - ll2),T = Id. O

Proof of Theorem 6.15. Step 1: Assume 7T is linear surjective operator from F
onto F'. Then there exists ¢ > 0 such that

T'(B1(0)) D B2.(0). (1.16)
Indeed, set
B = nm.

T is surjective = F = |J;-_, F,,. So by Baire there exists m € N : int(F,,) # 0.

By linearity int(7'(B1(0))) # 0!
Pick ¢ > 0 and yo € F' such that

B4(.'(y()) - T(Bl (O))?
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in particular

vo € T(B1(0)). (1.17)
By symmetry

—yo € T(B1(0)). (1.18)

Adding (I.17) and (I.18) we get

Bi4.(0) € T(B1(0)) + T(B1(0))

and since T'(B;(0)) is convex,

T(B1(0)) + T(B1(0)) = 2T(B1(0))

so (1.16) holds.

Step 2: Assume T € L(E, F) and (1.16) holds. Then (1.15) holds, i.e. T'(B:(0)) D
B.(0). Indeed, choose any y € F, ||y < c.

Aim: Find some = € FE such that ||z|| < 1 and Tx = y (because then (1.15)
holds! (why?)).

By (1.16) we know that

Voo >0 and g € F with ||y|| < aC

dz € E with ||z|| < % and ||y — Tz|| < e. (1.19)

(Hint: Use (I.16) and linearity to see this)

Choosing € = § we find z; € E such that

1 1
lz1]| < = and |y — Tz < §c.

Now apply (1.19) to y = y — Tz1. Since ||| < -;—C’,a = -;— and by (I.19) with

£ = g9 = 2%—, dzo € K with
1 . « c
lz2]l < = and ||§—Tz|=|ly—Tz —Tz| < -c=-.
4 2 4
Proceeding inductively, using (I.19) repeatedly with € = ¢, = 55, a = a, = %
we obtain a sequence (z,), such that

1 C
|zrll < o5 and ||y —T(z1+22+...2,)| < on ¥n € N.

So x,, := z1 + ...z, is Cauchy and hence x,, — = for some = € E.
Clearly

oo oo ]
lzll < 3" llznll < - 5 =1

n=1 n=1

and since 7" is continuous we have y = Tx. &
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Theorem 6.19 (Closed Graph). Let E,F be Banach spaces and T a linear
operator from E to F. Then

T s continuous <= The graph of T is closed.

Remark 6.20. o Assume that T : E — F. The graph of T is the set
G(T) :={(z,T(z))lxr e E} CE x F.

o The set G(T) C E x F is closed if for every sequence (x,), C E for which
rn — & and y, :=Tx, — y we have y = Tx.

Proof. "=*: Clear by continuity of 7T'!
"« Consider the two norms on E:

2l == llz]lz + ITz|F and [|zf|s := [z
The norm || - ||; is called the graph norm.
E is a Banach space w.r.t. || - ||2 by assumption and certainly

lzll2 < [zl Vz€E.

Let (zn)n C E be Cauchy w.r.t. ||-||2,ie,¥e > 03N : ||z, —2pm|2 < e VYn,m >
N. Then y, := Tz, is Cauchy in F and z,, is Cauchy in E. Therefore z = limz,,
and y = lim Tz, exist. Since G(T') is closed, it follows that y = Tx. Thus

|z = Zalli = ||z = 2alle + ly = Tnllr 20 asn— o0

80 &, converges to z also in || - ||; norm, i.e., (E,| -|1) is complete!
By Corollary 6.18 the two norms are equaivalent, i.e., there exists ¢ > 0 such
that

2l < cllzllz = cllle
S0
ITz||F < [lzlle + 1TzlF = (2] < ]z

[

7 Weak Topologies. Reflexive Spaces. Separa-
ble Spaces. Uniform Convexity

7.1 The coarsest topology for which a collection of maps
becomes continuous

Recall: Given a set X a topology 7 on X is a collection of subsets of X, called
the open sets, such that

(1)Per, Xer,
(2) arbitrary unions of sets in 7 are in 7,

(3) finite intersections of sets in 7 are in 7.
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