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(2) is called 7 is stable under arbitrary unions (or |
stable under finite intersections (or (Ng,ic0)-
A set X with a topology 7 is called topological space.

Suppose X is a set (no structure yet) and (Y;);es a collection of topological
spaces, and (;);er a collection of maps ¢; : X — Y;.

Problem 1: Construct a topology on X that makes all the maps (@;)ier
continuous. Can one find a topology on X which is most economical in the
sense that it contains the fewest open sets?

Note: If X is equipped with the discrete topology, then all subsets of X are
open and hence every map ; : X — Y, is continuous. But this topology is
huge!

Want: The cheapest topology! It is called the coarsest or weakest topology
associated with (y;)ier.,

If w; C Y; is open then ¢, 1(c,ui) is necessarily open in 7 and as w; varies in
the open subsets of Y; and 7 runs through I, one gets a family of open subsets
which is necessarily open in X! Call this (Uy)aeca-

More precisely: (Y;, ;) topological spaces, p; : X — Y},

), (3) is called 7 is

arbitrary

A={A=(G,w)|i e l,w; €T},

Ux = @i (wi)-

Jatch: (Uy)aea does not need to be a topology!

= Problem 2: Given a set X and a family (U )aea of subsets of X, construct
the cheapest topology 7 on X which contains (Uy)xea-

So 7 must be stable under (Ng,;. and U, pigrary and Ux C 7 VA € AL

Step 1: Consider the enlarged family of all finite intersections of sets in
(Ux)xea: Maer Ux, where I' C A is finite. Call this family ®. It is stable
under (Mg, ice-

Step 2: ® need not be stable under U, 1,iyary = consider families F obtained
from ® by taking arbitrary unions of sets in ®. So ¥F is stable under J

arbitrary”
Lemma 7.1. 7 := U, pitrary [ Vinite Ur s stable under (\g,.- Hence 7 is a
topology!
Proof. See any book on point set topology. (|

A basis of a neighborhood of a point € X is a family (U,);c; of open
sets containing x, such that any open set containing x contains an open set from
the basis (i.e., from (U;)icr).

Example: In a metric space X, take the open balls centered at = € X.

In our situation: Given x € X, V; a neighborhood of ¢;(x) in Y;

() »i'(Va)

finite

vields a basis of neighborhoods of z in X.

In the following, we equip X with the topology 7 which is the weakest
(smallest, coarsest) topology for which all the ¢; : X — Y; are continuous for
alli e I.
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Proposition 7.2. Let (z,), C X. Thenz, —» z in 7 (i.e., for anyU € T,z €
U,z, € U for almost alln) <= p;(z,) = @i(z) asn > oo Vi€ I.

Proof. =: Simple, since by definition ¢; is continuous Vi € I.
<: Let U be a neighborhood of . From the discussion above we may assume
U is of the form

U= )¢V,

ieJ

J C I finite, p;(z) € V; € 7. Since p;(z,) = pi(z)Vie I = fori € J3IN; €
N: pi(zn) € V; ¥Yn > N;. Choose N := max;cj(N;) < oo

= pi(zn) €V; YVieJVn2> N

=2z, e€U Yn>N.

Proposition 7.3. Let Z be a topological space, 1 : Z — X. Then
P is continuous <= ;o0 : Z =Y, is continuous Vi € 1.

Proof. ”=>*: Simple: use that compositions of continuous functions are contin-
uous.
7<% Need to show: ¥~ (U) is open (in Z) ¥V open set U in X. U has the form

U= |J e, View

arbitrary finite

v = |J v e M)

arbitrary finite

= U ﬂ (@io'lf’)_ (Vz)

arbitrary finite 5
open in Z
N o
e o
is open
1] -
=

is open!

so ¢~ 1(U) is open in Z, so v is continuous. O

7.2 The weakest topology o(E, E*)

Let E be a Banach space, E* the dual, so E has anorm |- || = || - ||g, f € E*
are continuous linear functionals on E. For f € E* let

5 E-F
T e 04(@) = f(a)
Take I = E*,Y; = F, X = E with the usual topology on R, resp. C.

Definition 7.4. The weak topology o(E, E*) on E is the coarsest (smallest)
topology associated with the collection (pf)fcp+ in the sense of Section 7.1.
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Note: Since every map s = [ is continuous linear functional the weak
topology is weaker (it contains fewer open sets) than the usual topology on E
induced by the norm on E'!

Proposition 7.5. The weak topology o(E, E*) is Hausdorff (i.e., it separates
points).

Proof. Let z1,x0 € FE,xy # x2. We need to construct open sets O;,0, €
o(F, E*) with 1 € Q1,22 € 02,90, N O3 = 0.

By Hahn-Banach (2nd geometric form) we can strictly separate {1}, {x2} by
some f € E* i.e., daa € R

Ref(x1) < a < Ref(z2).

Set
0, := {z € E|Ref(z) < a} = ¢ ((—o0, a) +1iR) € o(E, E*)
Oz := {z € E|Ref(z) > a} = ¢ ' ((a, +0) + iR) € o(E, E*).
Clearly 1 € 01,292 € 02,0, N O3 = 0. O

Proposition 7.6. Let xg € E. Given € > 0 and finitely many fi,..., fr € E*,
and let

V= V(f],...fk,&') = {QZE EI Ifl(T_IU)l LEN = 1,,k}

Then V' is a neighborhood of xo in o(E, E*) and we get a basis of neighborhoods
of xg in o(E, E*) by varyinge > 0,k € N, and f1,... fr € E*.

Proof.

k
zo eV = ﬂ 9921({2 €C| |z—ail| <e}) €c(E,E*), a;:= fi(xo), is open!

=1
Conversely, let zg € U € o(FE, E*). By definition of o(FE, E*), U contains an
open set W 3 xg of the form
W= () ¢5n' Vi),
finite
Vi neighborhood of f;(xz¢) = a; in F.
=3>0: {ze€C||lz—ai|l<e}CcV; Vi=1,...k

soxg e VCWCcCU. O

Notation: If (z,), € X converges to x in the weak topology o(FE, E*), we
write £, — z (or £, — z in o(E, E*), or ,, — z weakly in o(F, E*),or z, —
weakly). We say that z,, — =z strongly if ||z,, — || — 0 (usual convergence in

E).

Proposition 7.7. Let (x,), C E be a sequence. Then
(a) x,, — x weakly <— f(x,) — f(z)Vf € E*.
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(b) If x,, — x strongly then xz,, — = weakly.
(¢) If x,, — x weakly, then (||x,]||)n is bounded in R and ||z| < liminf, . ||z,]|-

(d) If x,, — x weakly and f, — [ strongly in E* (i.e., ||fn — fllg< — 0) then
fn(Tn) = f(x).

Proof. (a) Follows from the definition of o(F, E*) and Proposition 7.2.
(b) By (a)
|f(zn) — f(@)| = |f(zn —2)|] < || flle-||lzn — z]|le — O.

(¢c) Note that Vf € E*, (f(xn))n C F is bounded. Therefore, by the uniform
boundedness principle

oc > sup sup | f(xn)| = sup ||zn| E-
neN feE* ||fllg=<1 neN

-~

>

=llznlle
|f(@)| « [f(@n)| < [[flle-llznlle < llzxlle  if |[flle- < 1.

= |f(@)| < liminf |zallz VS € B, |flls- <1

= ||lzlle = sup |f(z)] < liminf ||z z-
feE~ | fllegx=<1 n—o00

(d) Note that by (a) and (¢)
|fnl@n) — f(@)] < |fulzn) — f(2n)| + | f(zn) — F(2)]

< ||fn — flle-llznll + | f(zp —x)] = 0 as n — oo.
|

Proposition 7.8. If E is finite-dimensional then o(E, E*) and the usual topol-
ogy are the same, so a sequence (x,), converges weakly < (x,), converges
strongly.

Proof. Since o(FE, E*) contains fewer open sets than the strong topology it is
enough to show that every (strongly) open set is weakly open.

Let o € F and U strongly open with g € U. Need to find fi,..., fr € E*, 2 >
0 with

V:=V(fi,---sfr,€) ={x € E| |fi(x —x0)| <eforalli=1,...,k} C U.

Let r > 0 such that B, (xg) € U. Pick a basis e1,€es,...,ex in E such that
|lei]| =1 for all e = 1,... k. Note that

k
T = zje; and x> z; =: f;(x)
i=1
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are continuous linear functionals on E. Also

k
lz —zoll = || D _ fi(z — zo)e;|

i=1
k
< > If5( = zo)llle; |
=1
k
=> |filx —x0)| <k-& VzeV.
i=1
Choose r = £ toget V C U. —

Remark 7.9. Weakly open (resp. closed) sets are always open (resp. closed)
in the strong topology! If E is infinite-dimensional, the weak topology o(FE, E™)
is strictly coarser (smaller) than the strong topology.

Example. Let E be infinite-dimensional. The unit sphere

—o(E,E")

S:={xe€E||zl=1} = S =B ={zx € FE||z| <1}

Proof. Step 1: {x € E| ||z| < 1} C il
Indeed, let =g € V C o(FE, E*). Need to show that VN S # 0.
By Proposition 7.6, we may assume

V={T€E||fz(1?—.1)'0)|<€ szl,k}

for some € > 0, f1,..., fx € E*.
Claim: Jyp € E \ {0} with fi(yo) =0Vi=1,...,k.
If not, the map

. E — Fk
2= e(z) == (f1(2), f2(x), - . -, fu(x))

is injective (why?) and hence ¢ would be injective and surjective from F onto
w(E) c F*. Since p(FE) C F* is a Banach space, the inverse mapping theorem
would give that ¢ and ¢~ ! are continuous so F is homecomorphic to a finite-
dimensional space, hence E would be finite-dimensional. So the claim is true.

Note that xg + typ € V for all t € R. Since g(t) := ||xo + tyo|| is continuous on
[0,00), g(0) = ||zo|| < 1,lim; 4o g(2) = oo, there exists tg > 0 : ||xzg + tyol| =
1= xo+ toyo € SNV. By Step 1 we see
—o(E,E”
R B B ), (%)

Step 2: Bg is closed in the weak topology.
Indeed,

Bp= ﬂ {z € E| |f(x)| <1} is weakly closed.
feE*, || fllg==1 e

weakly closed

—o(E.E™) . E.E*) .
By (%) and Step 2: Bg = S ( ) since §°° ) is the smallest weakly closed

set containing B and Bpg is weakly closed. [
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Example. The unit ball U = {x € E| ||z|| < 1}, E infinite-dimensional, is not
weakly open.

Indeed, if U were weakly open then U¢ = {x € E| ||z| = 1} is weakly closed and
hence

S'= BrNU*

is weakly closed which by the previous FExample it is not!

7.3 Weak topology and convex sets

Recall that every weakly closed set is strongly closed, but the converse is false
if & is infinite-dimensional.
But: convex + strongly closed = weakly closed.

Theorem 7.10. Let C C FE be convex. Then C is closed if and only if C is
weakly closed.

Proof. 7<=*: Clear since C° is weakly open, hence open.

7=*: Need to check that C¢ is weakly open. Let zo ¢ C. By Hahn-Banach,
there exists a closed hyperplane which strictly separates {zo} and C, i.e., there
exists f € E*,a € R such that

Ref(xg) < a < Ref(y) VyeC.
Set
V:={z € F|Ref(x) < a} € o(E,E™).
Then 2o € V,VNC =0so V C C°. [

Remark 7.11. The above proof shows that C = (| H. where the intersection is
over all closed half-spaces Ho which contain C'.

Corollary 7.12 (Mazur). Assume that x,, — x weakly. Then there exists a
sequence (Yn)n of convex combinations of x, which converges strongly to x.

Proof. Let C := conv(|J,=,{z:1}) be the convex hull of z,,. Since x belongs to
the weak closure of U,ﬁl{_a,l} it also belongs to the weak closure of C'! By
Theorem 7.10 we get x € C, the strong closure of C'! &5

Corollary 7.13. Assume ¢ : E — (—oo,+o0] is convexr and lower semi-
continuous (l.s.c) in the strong topology. Then w is l.s.c. in the weak topology.

Proof. ¢ is (strongly) Ls.c. if for every sequence (x,), C E,x, — x one has

liminf p(x,) > ¢(x)

n—oo

and similarly for weakly l.s.c. (replace z,, — = by z,, — x).
In terms of the level sets:

Lemma. ¢ : E — (—o0,+o0] is strongly (resp. weakly) l.s.c. if for all A € R
the sets

Ay = {x € E|lp(x) < A}

are strongly (resp. weakly) closed.
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Proof. If  is strongly l.s.c and z,, € Ay with z,, — x, then

@(x) < liminf p(x,) < A
N—00 N —
<A
sox € Ay, i.e., Ay is closed.

For the converse, assume that ¢ is not l.s.c. at some point x but A, is closed
VA € R. So there exists a sequence (x,), C E,x, — x and

liminf ¢(z,) < @(x).
n—roo
Thus there exists a subsequence, also called (x,,),, and A € R such that
wlzn) < A< p(x) Vn e N.

But then x,, € Ay, Vn € N and since x,, — = and A, is closed, also x € A,. i.e..
@(x) < A, a contradiction.

For the statement with strongly replaced by weakly, just replace x,, — x by
x, — x in the proof. [

Continuing the proof of the Corollary, we have
Ax = {z € Elp(z) < A}

is closed, since g is strongly l.s.c. Since ¢ is convex, we also have that A, is
convex (why?)! So A, is convex and strongly closed and by Theorem 7.10 it is
weakly closed! (|

Example. ¢(x) = ||z|| is convexr and strongly continuous so it is weakly l.s.c.
Hence if x,, — x weakly, then ||z|| < liminf,, . ||zn|| (compare with Proposition
7))

Theorem 7.14. Let ', B be Banach spaces and T : EE — B linear. Then T is
continuous in the strong topologies on E and B if and only if T is continuous
in the weak topologies on E and B.

Proof. "=-*: By Proposition 7.3, we need to show that for any f € B* the
composition foT, i.e., the map z + f(Tx) is continuous from (E,o(FE, E*)) to
F.

Since = — f(Tx) € E* it is automatically also continuous w.r.t. o(E, E™)!
V4= Assume T : (E,o(E,E*)) — (B,o(B, B*)) is continuous. Then

G(T) = {(=, Tx)

zr€FE}CExB

is closed in E x B equipped with the product topology o(E, E*) x o(B, B*) =
o(E x B,(E x B)*). So G(T) is weakly closed, but then also strongly closed in
FE x B. By the Closed graph theorem it follows that 7" : ¥ — B is continuous
in the strong topology. (|
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7.4 The weakx topology o(E™*, FE)

Comnsider the dual space E* of a normed vector space E. So far, we have two

topologies on E*:

(a) The usual (strong) topology associated to the norm on E*. ||f||lg- :=
SUP|| || <1 |f{z)]-

(b) The weak topology o(E™*, E**), where E** = (E*)* is the dual of E*, from
the last sections.
Note that we can always consider E as a subset of E** = { continuous linear

functionals on E*} by the following device: Given x € E let pox : E* — [F be
defined by

wa(f) := flx).

Then ¢, € E** corresponds to x € E and x — ¢, is injective since if @, = @,
then for all f € E* one has

f(z1) = Pay = Pao — f(x2)

and since E™ separates the points in E this means z; = x3! So the map = > ¢,
yvields an injection of E into E™*.

Definition 7.15. The weak* topology o(E~*, E) is the smallest topology on E*
assoctated with the family (p.)rcE, t.€., it is the smallest topology on E* which
makes all the maps ¢, : E¥ — F,x € E, continuous.

Remark 7.16. e Since E C E** it is clear that o(E*, E) contains fewer
open sets than the weak topology o(E™*, E**) which in turn has fewer open
sets that the strong topology on E™.

e The reason why one wants to study these different notions of weak topolo-
gies is that the fewer open sets a topology has, the more sets are compact!
Since compact sets are fundamentally important — e.q., in the proof of
existence of minimizers — it is easy to understand the importance of the
weakx topology.

Proposition 7.17. The weakx topology is Hausdorff.

Proof. Given fy, fo € E* with f; # f2, there exists x € E such that fi(z) #
f2(x) (this DOES NOT use Hahn-Banach, but just the fact that f; # fa2!).
W.l.o.g., we can assume that Re fi(xz) # Re fa(x). If not, then I'm fi(x) #
Im fs(x) and hence

Re(—ifi1(x)) = Im fi(xz) # Im fa(x) = Re(—ifa(x))

so consider —i f1, —i fy instead of f; and fs.
W.lo.g., Re fi(x) < Re fa(x) and choose « € R : Re fi(x) < a < Re fao(x).
Set

O, := {f € E*|Ref(x) < a} = ¢ '([—o0, a) + iR)
Oz := {f € E*|Ref(z) > a} = o7 ((a, 20) + iR)

Then 01,05 € o(E*,E), f1 € O1, f2 € O3 and O N Oy = (. [
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Proposition 7.18. Let fo € E*,n € N, {z1,z9,...,z,} C E and € > 0. Con-
sider

V= ¥z, cnamaig) i= {f € B [(Ff—Po)E)| <eforall = 1, yn}

Then V is a neighborhood of fy in o(E*, E). Moreover, we obtain a basis of
neighborhoods of fo in o(E, E*) by varyings > 0,n € N, and z1,...,z, € E.

Proof. A literal transcription of the proof of Proposition 7.6. D

Notation: If a sequence (f,), C E* converges to f in the weak* topology,
X 4
we write f,, — f.
X . . . # . . .
To avoid confusion, we sometimes emphasize ” f,, — fino(E*, E)“," f, — f
in o(E*, E**)*“ and ” f,, — f strongly*.

Proposition 7.19. Let (fn)n € E. Then

(a) fn = f in o(E*,E) << fau(z) — f(x),Yx € FE (i.e., convergence of
functionals in o(E*, E) is the same as pointwise convergence of f, to f!).

(b) If fn — [ strongly, then f, — f in o(E*, E**).

If fo — f in o(E*, E**), then f, — f in o(E*, E).
(c) If fn = f in o(E*, E), then (||fnll)n is bounded and || f|| < liminf || f,]|.
(d) I X fin o(E*, E) and if x,, — x strongly in E, then f,(x) — f(x).
Proof. Copy the proof of Proposition 7.7. [

Remark 7.20. When E is finite-dimensional, then the three topologies (strong,
weak, weakx) on E* coincide! Indeed, then the canonical injection J : E — E**
given by x — p.,p.(f) := f(x), f € E* is surjective (since dimE = dimE**)
and therefore o(E*, F) = o(E*, E**).

The main result about compactness in the weaks topology is the famous
Theorem 7.21 (Banach-Alaoglu-Bourbaki). The closed unit ball
Bg. :={f € E*| ||fllg- <1}
is compact in the weakx topology o(E*, E).

Note: This compactness property is the most essential property of the weaks
topology!

Proof. We will reformulate the problem slightly: Consider the cartesian product
Y :=FF = {maps w : E = F} = (w(x))zee with w(z) € F.

We equip Y with the standard product topology, i.e., the smallest topology on
Y such that the collection of maps

FE=Yswwrwx)eF,zeE

is continuous for all x € E. This is the same as the topology of pointwise
convergence, i.e., (wn)n C Y converges to w if Vx € F,w,(xz) — w(x) (see
Munkres: Topology, A First Course, Prentice Hall, 1975 or Dixmier: General
Topology, Springer 1984, or Knapp: Basic Real Analysis, Birkhauser, 2005).
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