

جامعة الانبار

كلية التربية للعلوم الصرفة

قسم الرياضيات / ماجستير

مقرر: التحليل الدالي

المحاضرة الاولى (7)

(المصدر)

Lectures Notes in Functinoal Analysis WS 2012 – 2013

7. WEAK TOPOLOGIES. REFLEXIVE SPACES. SEPARABLE SPACES. UNIFO

A very useful fact on product topology:

Theorem (Tychonov's theorem). An arbitrary product of compact spaces is compact in the product topology.

Proof. See the above books.

Note: E^* consists of very special maps from E to \mathbb{F} , namely the continuous linear maps. So we may consider E^* as a subset of Y!

More precisely, let

$$\Phi: E^* \to Y$$

be the canonical injection from E^* to Y given by

$$\Phi(f) := (\Phi(f)_x)_{x \in E} = (f(x))_{x \in E}.$$

Clearly, Φ is continuous from E^* into Y. To see this, simply use Proposition 7.3 and note that for each fixed $x \in E$, the map

$$E^* \ni f \mapsto (\Phi(f))_x = f(x)$$

is continuous!

Since the inverse $\Phi^{-1}:\Phi(E^*)\to E^*$ is given by

$$\omega \mapsto (E \ni x \mapsto \Phi^{-1}(\omega)(x) := \omega(x)),$$

one sees that $\Phi^{-1}: Y \supset \Phi(E^*) \to E^*$ is also continuous when Y is given the product topology. Indeed, using Proposition 7.3 again, it is enough to check, for each fixed $x \in E$, that the map $\omega \mapsto \Phi^{-1}(\omega)(x) := \omega(x)$) is continuous on $\Phi(E^*) \subset Y$. But this is obvious, since Y is given the product topology, so if $\omega_n \to \omega$ in Y then $\omega_n(x) \to \omega(x)$ for all $x \in E$, so

$$\Phi^{-1}(\omega_n)(x) = \omega_n(x) \to \omega(x) = \Phi^{-1}(\omega)(x)$$
 as $n \to \infty$.

Upshot: Φ is a homeomorhism from E^* onto $\Phi(E^*) \subset Y$ where E^* is given the weak* topology $\sigma(E^*, E)$ and Y is given the product topology.

Note: $\Phi(B_{E^*}) = K$, where the set $K \subset Y$ is given by

$$\begin{split} K = \{ \omega \in Y | \ |\omega(x)| \leq \|x\|_E, \omega \ \text{is linear, i.e.,} \\ \omega(x+y) = \omega(x) + \omega(y) \ \text{and} \\ \omega(\lambda x) = \lambda \omega(x) \ \forall \lambda \in \mathbb{F}, x, y \in E \}. \end{split}$$

Now we only have to check that K is a compact subset of Y! We can write $K = K_1 \cap K_2$ where

$$K_1 = \{ \omega \in Y | |\omega(x)| \le ||x||_E \ \forall x \in E \}$$

and

$$K_2 := \Phi(E^*) = \{ \omega \in Y | \omega \text{ is linear} \}.$$

Note that K_1 can be written as

$$K_1 = \prod_{x \in E} [-\|x\|, \|x\|] \subset \mathbb{R}^E \quad \text{if } \mathbb{F} = \mathbb{R}$$

or

$$K_1 = \prod_{x \in E} \{ z \in \mathbb{C} | |z| \le ||x|| \} \subset \mathbb{C}^E \quad \text{if } \mathbb{F} = \mathbb{C}$$

and by Tychonov's theorem K_1 is a compact subset of Y!

So we only have to show that K_2 is closed (since the intersection of a closed set and a compact set is compact!). Let

$$B_{x,y,\lambda_1,\lambda_2} := \{ \omega \in Y | \omega(\lambda_1 x + \lambda_2 y) - \lambda_1 \omega(x) - \lambda_2 \omega(y) = 0 \}$$

which are closed subsets of Y, since if $\omega_n \in B_{x,y,\lambda_1,\lambda_2}$ then, if $\omega_n \to \omega$ in Y, then

$$0 = \omega_n(\lambda_1 x + \lambda_2 y) - \lambda_1 \omega_n(x) - \lambda_2 \omega_n(y)$$

 $\to \omega(\lambda_1 x + \lambda_2 y) - \lambda_1 \omega(x) - \lambda_2 \omega(y)$ as $n \to \infty$

so $\omega \in B_{x,y,\lambda_1,\lambda_2}$. So

$$K_2 := \bigcap_{x,y \in E, \lambda_1, \lambda_2 \in \mathbb{F}} B_{x,y,\lambda_1,\lambda_2}$$

is closed in Y!

Hence $K = K_1 \cap K_2$ is compact and so $B_{E^*} = \Phi^{-1}(K)$ is compact in E^* w.r.t $\sigma(E^*, E)$.

7.5 Reflexive spaces

Definition 7.22. Let E be a Banach space and $J: E \to E^{**}$ the canonical injection from E into E^{**} given by

$$(J(x))(f) := \varphi_x(f) := f(x) \quad \forall x \in E, f \in E^*.$$

The space E is **reflexive** if J is surjective, i.e., $J(E) = E^{**}$.

Note: When E is reflexive, E^{**} is usually identified with E!

Remark 7.23. (a) Finite-dimensional spaces are reflexive (since $dimE = dimE^* = dimE^{**}$).

Later we will see that L^p and l^p are reflexive if 1 .

- (b) Every Hilbert space is reflexive.
- (c) L¹, L[∞], l¹ and l[∞] are not reflexive.

 $C(K) = space \ of \ continuous \ functions \ on \ an \ infinite \ compact \ metric \ space \ K$ is not reflexive.

(d) It is essential to use the canonical injection J in the definition of reflexive spaces. See R.C. James: A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci USA 37 (1951), pp 174-177, for a non-reflexive Banach space for which E is isometric to E**.

Theorem 7.24 (Kakutani). Let E be a Banach space. Then E is reflexive if and only if $B_E = \{x \in E | ||x|| \le 1\}$ is compact in the weak topology $\sigma(E, E^*)$.

Proof. " \Rightarrow ": Here $J(B) = B_{E^{**}}$ by assumption. By Theorem 7.21 we know that $B_{E^{**}}$ is compact in the weak* topology $\sigma(E^{**}, E^{*})$. So it is enough to check that $J^{-1}: E^{**} \to E$ is continuous when E^{**} is equipped with the weak* topology $\sigma(E^{**}, E^{*})$ and E is equipped with the weak topology $\sigma(E, E^{*})$.

But a map $J^{-1}: E^{**} \to E$ is continuous when E is given the weak topology if and only if $\forall f \in E^*$ the map $\xi \mapsto f(J^{-1}(\xi))$ is continuous.

Note that $f(J^{-1}(\xi)) = \xi(f), \xi \in E^{**}$ but for fixed f the map $E^{**} \ni \xi \mapsto \xi(f)$ is continuous on E^{**} with the weak* topology $\sigma(E^{**}, E^{*})$! So J^{-1} is continuous and $B_{E} = J^{-1}(B_{E^{**}})$ is compact.

Lemma 7.25. Let E be a Banach space, $f_1, \ldots f_k \in E^*$ and $\gamma_1, \ldots, \gamma_k \in \mathbb{F}$. Then

(a)
$$\forall \varepsilon \exists x_{\varepsilon} \in E \text{ with } ||x_{\varepsilon}|| \leq 1 \text{ and } |f_l(x_{\varepsilon}) - \gamma| < \varepsilon \ \forall l = 1, \dots, k$$

is equivalent to

(b)
$$\left|\sum_{l=1}^{k} \beta_l \gamma_l\right| \leq \left\|\sum_{l=1}^{k} \beta_l f_l\right\| \forall \beta_1, \dots, \beta_k \in \mathbb{F}.$$

Proof. Only for $\mathbb{F} = \mathbb{C}$.

"(a)
$$\Rightarrow$$
 (b)": Fix $\beta_1, \dots, \beta_k \in \mathbb{C}$, $S := \sum_{l=1}^k |\beta_l|$. By (a) we have

$$\left|\sum_{l=1}^{k} \beta_{l} f_{l}(x_{\varepsilon}) - \sum_{l=1}^{k} \beta_{l} \gamma_{l}\right| \leq \varepsilon S$$

and hence

$$|\sum_{l=1}^{k} \beta_{l} \gamma_{l}| \leq |\sum_{l=1}^{k} \beta_{l} f_{l}(x_{\varepsilon})| + \varepsilon S$$

$$\leq \|\sum_{l=1}^{k} \beta_{l} f_{l}\|_{E^{*}} \|x_{\varepsilon}\|_{E} + \varepsilon S \quad \forall \varepsilon > 0.$$

"(b) \Rightarrow (a)": We will show that not (b) \Rightarrow not (a): Let $\gamma = (\gamma_1, \dots, \gamma_k) \in \mathbb{C}^k$ and let $\varphi : E \to \mathbb{C}^k$ be given by

$$\varphi(x) := (f_1(x), f_2(x), \dots, f_k(x)).$$

Then (a) can be rephrased as follows

$$\gamma \in \overline{\varphi(B_E)}$$
 (closure in \mathbb{C}^k)

and not (a) means $\gamma \notin \overline{\varphi(B_E)}$, i.e., $\{\gamma\}$ and $\overline{\varphi(B_E)}$ can be strictly separated in \mathbb{C}^k by a hyperplane, i.e., there exist $\beta = (\beta_1, \dots, \beta_k) \in \mathbb{C}^k = (\mathbb{C}^k)^*$ and $\alpha \in \mathbb{R}$ such that for all $x \in B_E$

$$Re(\beta(\varphi(x))) = Re(\beta \cdot \varphi(x)) = Re \sum_{l=1}^{k} \beta_l f_l(x)$$
$$< \alpha < Re(\beta \cdot \gamma) = Re \sum_{l=1}^{k} \beta_l \gamma_l.$$

Therefore (take sup over $||x|| \le 1$)

$$\|\sum_{l=1}^k \beta_l f_l\| \le \alpha < Re \sum_{l=1}^k \beta_l \gamma_l \le |\sum_{l=1}^k \beta_l \gamma_l|,$$

i.e., not (b) is true!

Lemma 7.26. Let E be a Banach space. Then $J(B_E)$ is dense in $B_{E^{**}}$ w.r.t. the weak* topology $\sigma(E^{**}, E^*)$ on E^{**} . Consequently, J(E) is dense in E^{**} w.r.t. the weak* topology $\sigma(E^{**}, E^*)$ on E^{**} .

Proof. Let $\xi \in B_{E^{**}}$ and V be a neighborhood of ξ in $\sigma(E^{**}, E^{*})$. Need to show $V \cap J(B_{E}) \neq \emptyset$. As usual, we may assume that V is of the form

$$V = \{ \eta \in E^{**} | |(\eta - \xi)(f_j)| < \varepsilon, \ \forall j = 1, \dots, k \}$$

for some $f_1, \ldots f_k \in E^*, \varepsilon > 0$.

We have to find $x \in B_E$ with $J(x) \in V$, i.e.,

$$|f_l(x) - \xi(f_l)| < \varepsilon \quad \forall l = 1, \dots k.$$

Set $\gamma_l := \xi(f_l)$. By Lemma 7.25 we need to check

$$|\sum_{l=1}^{k} \beta_l \gamma_l| \le \|\sum_{l=1}^{k} \beta_l f_l\|$$

but this is clear since

$$\sum_{l=1}^{k} \beta_{l} \gamma_{l} = \sum_{l=1}^{k} \beta_{l} \xi(f_{l}) = \xi(\sum_{l=1}^{k} \beta_{l} f_{l}) \quad (\xi \in E^{**})$$

so

$$|\sum_{l=1}^{k} \beta_{l} \gamma_{l}| = |\xi(\sum_{l=1}^{k} \beta_{l} f_{l}) \leq \|\sum_{l=1}^{k} \beta_{l} f_{l}\|_{E^{*}} \underbrace{\|\xi\|_{E^{**}}}_{\leq 1}.$$

Remark 7.27. $J(B_E)$ is always closed in $B_{E^{**}}$ in the strong topology on E^{**} ! Indeed, if $\xi_n = J(x_n) \to \xi$ then, since J is an isometry, x_n must be Cauchy in B_E , so $x_n \to x$ and $\xi = J(x)$. Thus $J(B_E)$ is not dense in $B_{E^{**}}$ in the strong topology unless $J(B_E) = B_{E^{**}}$, i.e., E is reflexive!

Continuing the proof of Theorem 7.24 " \Leftarrow ":

The canonical injection $J: E \to E^{**}$ is always continuous from $\sigma(E, E^*)$ into $\sigma(E^{**}, E^*)$ since for fixed $f \in E^*, x \mapsto (Jx)(f) = f(Jx)$ is continuous w.r.t. $\sigma(E, E^*)$. Assuming that B_E is weakly compact (i.e., in $\sigma(E, E^*)$ topology) we see that $J(B_E)$ is compact and thus closed in E^{**} w.r.t. $\sigma(E^{**}, E^*)$.

But by Lemma 7.26, $J(B_E)$ is dense in $B_{E^{**}}$ for the same topology! Therefore $J(B_E) = B_{E^{**}}$, hence $J(E) = E^{**}$, i.e., E is reflexive.

Theorem 7.28. Assume that E is a reflexive Banach space and $(x_n)_n \subset E$ a bounded sequence. Then there exists a subsequence (x_{n_l}) that converges weakly.

Remark 7.29. A result of Eberlein-Šmulian says that if E is a Banach space such that every bounded sequence has a weakly convergent subsequence then E is reflexive! (See Holmes: Geometric Functional Analysis and its Applications, Springer, 1975).

Proposition 7.30. Let E be a reflexive Banach space and $M \subset E$ a closed linear subspace of E. Then M is reflexive.

Proof. M, equipped with the norm from E has a-priori two distinct weak topologies:

- (a) the topology induced by $\sigma(E, E^*)$
- (b) its own weak topology $\sigma(M, M^*)$.

Fact: these two topologies are the same since by Hahn-Banach, every continuous linear functional on M is the restriction of a continuous linear functional on E!

By Theorem 7.24 we need to check that B_M is compact in the weak topology $\sigma(M, M^*)$, or equaivalently, in the topology $\sigma(E, E^*)$! We know that B_E is compact in the weak topology and since M is (strongly) closed and convex it is also weakly closed by Theorem 7.10. So $B_M = M \cap B_E$ is weakly compact!

Corollary 7.31. A Banach space E is reflexive if and only if E^* is reflexive.

Proof. " \Rightarrow ": Roughly: $E^{**} = E \Rightarrow E^{***} = E^*$.

More precisely, let $J: E \to E^{**}$ be the canonical isometry. Let $\varphi \in E^{***}$. The map

$$x \mapsto f_{\varphi}(x) := \varphi(J(x))$$

is a continuous linear functional on E, so $f \in E^*$. Note:

$$\varphi(J(x)) = f(x) = (J(x))(f) \quad \forall x \in E, J(x) \in E^{**}. \tag{*}$$

By assumption $J: E \to E^{**}$ is surjective so for every $\xi \in E^{**} \exists x \in E, \xi = J(x)$. So (*) yields

$$\varphi(\xi) = \xi(f) \quad \forall \xi \in E^{**},$$

i.e., the canonical injection $E^* \to E^{***}$ is surjective.

" \Leftarrow ": Let E^* be reflexive. By " \Rightarrow " above we know that E^{**} is reflexive. Since $J(E) \subset E^{**}$ is a closed subspace in the strong topology, Theorem 7.30 yields that J(E) is reflexive. Thus E is reflexive!

Corollary 7.32. Let E be a reflexive Banach space, $K \subset E$ a bounded, closed and convex subset. Then K is compact in the weak topology $\sigma(E, E^*)$.

Proof. By Theorem 7.10 K is closed in the weak topology. Since K is bounded there exists $m \in \mathbb{N}$ with $K \subset mB_E$ and mB_E is weakly compact by Theorem 7.24. So K is a weakly closed subset of a weakly compact set and thus K is weakly compact.

Corollary 7.33. Let E be a reflexive Banach space and let $A \subset E$ be non-empty, closed and convex. Let $\varphi : A \to (-\infty, \infty]$ be a convex lower semi-continuous (l.s.c.) function such that $\varphi \not\equiv +\infty$ and

$$\lim_{x \in A, \|x\| \to \infty} \varphi(x) = \infty \quad (no \ assumption \ if \ A \ is \ bounded). \tag{**}$$

Then φ achieves its minimum on A, i.e., there exists some $x_0 \in A$ such that

$$\varphi(x_0) = \inf_{x \in A} \varphi(x).$$

Proof. Fix any $a \in A$ such that $\varphi(a) < \infty$ and define

$$\tilde{A} := \{ x \in A | \varphi(x) \le \varphi(a) \}.$$

Then \tilde{A} is closed, convex and bounded (by (**)) and thus compact in the weak topology $\sigma(E, E^*)$ by Corollary 7.32! By Corollary 7.13, φ is also l.s.c. in the weak topology $\sigma(E, E^*)$ (since φ is convex and strongly l.s.c).

Let $(x_n)_n \subset \tilde{A}$ be a minimizing sequence in \tilde{A} (i.e., $x_n \in \tilde{A}, \varphi(x_n) \to \inf_{x \in \tilde{A}} \varphi(x)$). Since \tilde{A} is weakly compact, $(x_n)_n$ has a weakly convergent subsequence, i.e.

$$x_0 := \text{weak} - \lim_{j \to \infty} x_{n_j} \text{ exists}$$

for some subsequence $(x_{n_j})_j$ of (x_n) . Since \tilde{A} is weakly closed it follows that $x_0 \in \tilde{A}$ and by the weak l.s.c. property of φ we get

$$\inf_{x \in \tilde{A}} \varphi(x) \le \varphi(x_0) \le \liminf_{l \to \infty} \varphi(x_{n_l}) = \inf_{x \in \tilde{A}} \varphi(x)$$

so $\varphi(x_0) = \inf_{x \in \tilde{A}} \varphi(x)$. If $x \in A \setminus \tilde{A}$, then

$$\varphi(x_0) \le \varphi(a) < \varphi(x),$$

thus $\varphi(x_0) < \varphi(x) \ \forall x \in A$.

Remark 7.34. Corollary 7.33 is the main reason why reflexive spaces and convex functions are so important in many problems in the calculus of variations.

7.6 Separable spaces

Definition 7.35. A metric space E is separable if there exists a countable dense subset $D \subset E$.

<u>Note:</u> Many important spaces are separable. Finite-dimensional spaces are separable, also L^p and $l^p, 1 \leq p < \infty$ are separable. C(K), K compact, is separable, but L^{∞} and l^{∞} are not separable.

Proposition 7.36. Let E be a separable metric space and $F \subset E$ any subset. Then F is separable.

Proof. Let $(u_n)_n \subset E$ be a countable dense subset of E and $r_m > 0, r_m \to \infty$ as $m \to \infty$. Choose any point $a_{m,n} \in B_{r_m}(u_n) \cap F$ whenever this is non-empty. Then $(a_{m,n})_{m,n}$ is countable and dense in F.

Theorem 7.37. Let E be a Banach space such that E^* is separable. Then E is separable.

Remark 7.38. The converse is not true! E.g., $E = L^1$ is separable, but $E^* = L^{\infty}$ is not.

Proof. Let $(f_n)_{n\in\mathbb{N}}$ be countable and dense in E^* . Since $||f_n|| := ||f_n||_{E^*} := \sup_{x\in E, ||x||_E=1} |f_n(x)|$, there is some $x_n\in E$ such that

$$||x_n|| = 1$$
 and $|f_n(x_n)| \ge \frac{1}{2} ||f_n||$. (*)

Let L be the vector space over \mathbb{F} generated by the $(x_n)_{n\in\mathbb{N}}$ (i.e., the set of finite linear combinations of the x_n).

Claim 1: L is dense in E.

Indeed, according to Remark 5.28 we have to check that any $f \in E^*$ which vanishes on L must be identically zero.

Given $\varepsilon > 0 \; \exists N \in \mathbb{N} \text{ such that } ||f - f_N|| < \varepsilon$. Then

$$||f|| \le ||f - f_N|| + ||f_N||.$$

Note that since $f(x_N) = 0$ (f vanishes on L) and (*) we have

$$\frac{1}{2}||f_N|| \le ||f_N(x_N)|| = ||(f - f_N)(x_N)|| \le ||f - f_N|| ||x_N|| = ||f - f_N||.$$

So

$$||f|| \le ||f - f_N|| + 2||f - f_N|| < 3\varepsilon$$

and since this holds for all $\varepsilon > 0$, ||f|| = 0, i.e., $f \equiv 0$.

If $\mathbb{F} = \mathbb{R}$, let L_0 be the vector space over \mathbb{Q} generated by the $(x_n)_n$. If $\mathbb{F} = \mathbb{C}$ let L_0 be the vector space over $\mathbb{Q} + i\mathbb{Q}$ generated by the $(x_n)_n$. I.e., the set of all finite linear combinations with coefficients in \mathbb{Q} , resp. in $\mathbb{Q} + i\mathbb{Q}$.

Then L_0 is dense in L and hence dense in E (since L is dense in E by Claim 1).

Claim 2: L_0 is countable!

Indeed, for $n \in \mathbb{N}$ let Λ_n be the vector space over \mathbb{Q} , resp. over $\mathbb{Q}+i\mathbb{Q}$, generated by $(x_k)_{1\leq k\leq n}$. Λ_n is countable and

$$L_0 = \bigcup_{n \in \mathbb{N}} \Lambda_n$$

is countable, as a countable union of countable sets.

Corollary 7.39. Let E be a Banach space. Then E is reflexive and separable if and only if E^* is reflexive and separable.

Proof. We already know by Theorem 7.37 and Corollary 7.31 that

 E^* reflexive and separable \Rightarrow Ereflexive and separable.

Conversely, if E is reflexive and separable, then $E^{**} = J(E)$ is reflexive and separable. Since $E^{**} = (E^*)^*$, the " \Rightarrow " direction applied to E^* yields E reflexive and separable.

There is also a connection between separability and metrizability of the weak topologies.

Theorem 7.40. Let E be a separable Banach space. Then B_{E^*} is metrizable in the weak* topology $\sigma(E^*, E)$. Conversely, if B_{E^*} is metrizable in $\sigma(E^*, E)$, then E^* is separable.

There is a dual statement.

Theorem 7.41. Let E be a Banach space such that E^* is separable. Then B_E is metrizable in the weak topology $\sigma(E, E^*)$. Conversely, if B_E is metrizable in $\sigma(E, E^*)$, then E^* is separable.

Proof of Theorem 7.40. Let $(x_n)_n \subset B_E$ be a dense countable subset of B_E . For $f \in E^*$ set

$$[f] := \sum_{n=1}^{\infty} \frac{1}{2^n} |f(x_n)|.$$

Then $[\cdot]$ is a norm on E^* and $[f] \leq ||f||_{E^*}$ (Why?). Put d(f,g) := [f-g]. We have to show that the topology induced bu d on B_{E^*} is the same as the weak* topology $\sigma(E^*, E)$ restricted to B_E .

Step 1: Let $f_0 \in B_{E^*}$ and V a neighborhood of f_0 in $\sigma(E^*, E)$. Have to find some r > 0 such that

$$U_r = \{ f \in B_{E^*} | d(f, f_0) < r \} \subset V.$$

As before, we can assume that V is of the form

$$V = \{ f \in B_{E^*} | | (f - f_0)(y_i) | < \varepsilon, \forall i = 1, ..., k \}$$

for some $\varepsilon > 0, y_1, \ldots, y_k \in E$.

W.l.o.g., $||y_i|| \le 1, i = 1, ..., k.$

Since $(x_n)_n$ is dense in B_E , we know that $\forall i = 1, ..., k, \exists n_i \in \mathbb{N}$ such that

$$||y_i - x_{n_i}|| < \frac{\varepsilon}{4}.$$

Choose r > 0 small enough such that

$$2^{n_i}r < \frac{\varepsilon}{2}, \quad i = 1, \dots, k.$$

7. WEAK TOPOLOGIES. REFLEXIVE SPACES. SEPARABLE SPACES. UNI

Claim: $U_r \subset V!$ Indeed, if

$$r > d(f, f_0) = \sum_{n=1}^{\infty} \frac{1}{2^{n_i}} |(f - f_0)(x_{n_i})|$$

then

$$\frac{1}{2^{n_i}} |(f - f_0)(x_{n_i})| < r, \quad \forall i = 1, \dots, k.$$

Hence, for $i = 1, \ldots, k$

$$|(f - f_0)(y_i)| = |(f - f_0)(y_i - x_{n_i}) + (f - f_0)(x_{n_i})| \le \underbrace{\|f - f_0\|}_{\leq 2} \underbrace{\|y_i - x_{n_i}\|}_{\leq \frac{\varepsilon}{4}} + \underbrace{|(f - f_0)(x_{n_i})|}_{\leq \frac{\varepsilon}{2}} < \varepsilon$$

so $f \in V$.

Step 2: Let $f_0 \in B_{E^*}$. Given r > 0, we have to find some neighborhood V in $\overline{\sigma(E^*, E)}$ such that

$$V \subset U = \{ f \in B_{E^*} | d(f, f_0) < r \}.$$

We choose V to be of the form

$$V := \{ f \in B_{E^*} | |(f - f_0)(x_i)| < \varepsilon \} \quad \forall i = 1, \dots, k$$

with ε and k to be determined so that $V \subset U$. If $f \in V$, then

$$d(f, f_0) = \sum_{n=1}^{\infty} \frac{1}{2^n} |(f - f_0)(x_n)|$$

$$= \sum_{n=1}^k \frac{1}{2^n} \underbrace{|(f - f_0)(x_n)|}_{<\varepsilon} + \sum_{n=k+1}^{\infty} \frac{1}{2^n} \underbrace{|(f - f_0)(x_n)|}_{\le 2}$$

$$< \varepsilon + 2 \sum_{n=k+1}^{\infty} \frac{1}{2^n} = \varepsilon + \frac{1}{2^{k-1}}$$

so it is enough to take $\varepsilon = \frac{r}{2}$ and $k \in \mathbb{N}$ such that $\frac{1}{2^{k-1}} < \frac{r}{2}$.

Conversely, suppose that B_{E^*} is metrizable in $\sigma(E^*, E)$ and let us prove that E is separable.

Set

$$U_n := \{ f \in B_{E^*} | d(f, 0) < \frac{1}{n} \}$$

and let V_n be a neighborhood of 0 in $\sigma(E^*, E)$ such that $V_n \subset U_n$. Again, we may assume that V_n has the form

$$V_n := \{ f \in B_{E^*} | |f(x)| < \varepsilon_n \ \forall x \in \Phi_n \}$$