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7. WEAK TOPOLOGIES. REFLEXIVE SPACES. SEPARABLE SPACES. UNIF(

A very useful fact on product topology:

Theorem (Tychonov’s theorem). An arbitrary product of compact spaces is
compact in the product topology.

Proof. See the above books. O

Note: I2* consists of very special maps from F to F, namely the continuous
linear maps. So we may consider E* as a subset of Y'!
More precisely, let

d:E*—>Y
be the canonical injection from ~* to Y given by
@(f) = ((I)(f).r).LEE — (f(-l))er

Clearly, ® is continuous from E* into Y. To see this, simply use Proposition
7.3 and note that for each fixed x € F, the map

E*> fr (2(f))z = f(z)
is continuous!
Since the inverse ® ! : ®(E*) — E* is given by
wr (E3z— & Y (w)(z) = w(x)),
one sees that ®~! : Y O ®(E*) — E* is also continuous when Y is given the
product topology. Indeed, using Proposition 7.3 again, it is enough to check,
for each fixed z € E, that the map w + & (w)(x) := w(z)) is continuous on

P(F*) C Y. But this is obvious, since Y is given the product topology, so if
wnp — w in Y then wy,(x) — w(x) for all x € E, so

& Hw,)(z) = wn(x) > w(x) = 2 Yw)(x) asn — co.
Upshot: @ is a homeomorhism from E* onto ®(E*) C Y where E* is given
the weak= topology o(F*, F) and Y is given the product topology.
Note: ®(Bg-) = K, where the set K C Y is given by

K = {weY]| |w(x)| < ||lz||g,w is linear, i.e.,
w(z + y) = w(x) + w(y) and
w(Az) = Aw(x) VA e F,xz,y € E}.

Now we only have to check that K is a compact subset of Y!
We can write K = K N K5 where

K ={w e Y| |w(x)| < ||lz||g Vx € E}
and

Ky := ®(E*) = {w € Y|w is linear}.
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Note that K; can be written as

K = [ [=llzl, 2l c R® i F=R
xzeF

or
Ki=[[{zeCllzl<|zl} cCP iF=C
zeFE

and by Tychonov’s theorem K, is a compact subset of Y'!

So we only have to show that K is closed (since the intersection of a closed
set and a compact set is compact!).
Let

Bz yaiage = {w € Y|w(Aiz 4+ A2y) — Mw(x) — Aaw(y) = 0}

which are closed subsets of Y, since if w,, € B, 4 a,,A, then, if w, - win Y,
then

0 =wn(/\1~'17 o /\2y) — A\1wn (-T) - A2\'—‘)71(;1/)
= whiz + A2y) — Mw(z) — Aow(y) asn — oo

SO W € Bm,y,h)vz'

So

Ko = ﬂ Ba,y, a0
z,yEE, A1, A2EF

is closed in Y'!

Hence K = K; N K53 is compact and so Bg+ = <I>_1(K') is compact in E*
w.r.t o( E*, E). il
7.5 Reflexive spaces

Definition 7.22. Let E be a Banach space and .J : E — E™ the canonical
injection from E into E** given by

(J@)(f) i= @u(f) = f(x) Vx€E,feE"
The space E is reflexive if .J is surjective, i.e., J(E) = E**.
Note: When FE is reflexive, ** is usually identified with F!

Remark 7.23. (a) Finite-dimensional spaces are reflexive (since dimF = dimE™ -
dimE™" ).
Later we will see that LP and IP are reflerive if 1 < p < oc.

(b) Every Hilbert space is reflexive.
(¢c) L', L>1' and > are not reflexive.

C(K) = space of continuous functions on an infinite compact metric space K

is not reflexive.
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(d) It is essential to use the canonical injection J in the definition of reflexive
spaces. See R.C. James: A non-reflexive Banach space isometric with its
second conjugate, Proc. Nat. Acad. Sci USA 37 (1951), pp 174-177, for a
non-reflevive Banach space for which E is isometric to E**.

Theorem 7.24 (Kakutani). Let E be a Banach space. Then E is reflexive if
and only if B = {x € E| ||z|| < 1} is compact in the weak topology o(E, E*).

Proof. "=*: Here J(B) = Bpg-+ by assumption. By Theorem 7.21 we know
that Bg-- is compact in the weak* topology o(E**, E*). So it is enough to
check that J—!: E** — FE is continuous when E** is equipped with the weakx
topology o(E**, E*) and F is equipped with the weak topology o(E, E*).

But a map J~!: E** — F is continuous when FE is given the weak topology if
and only if Vf € E* the map & — f(J1(£)) is continuous.

Note that f(J 1(£)) = &(f),& € E** but for fixed f the map E** 3 £ — £(f) is
continuous on E** with the weak* topology o(E**, E*)! So .J~! is continuous
and Br = J '(Bg--) is compact.

7<=:* We need the following two lemmata

Lemma 7.25. Let E be a Banach space, fi,...fr € E* and v1,...,v € F.
Then

(a) Ve 3x. € E with ||z:|| <1 and |fi(z:) — | <eVli=1,...,k

is equivalent to

k k
(®) 122 Bl < I 22 Bufill VB, ..., B € F.
i=1 i=1

Proof. Only for IF = C.
k
”(a) = (b)“: Fix B1,...,8 € C, S:= > |Bi]- By (a) we have
=1

k

k
1D Bufilze) =D Bl < €8
=1

=1
and hence

k k
15" Bl < 1D Bifilze)| + €S
I=1

=1

k
< ” Z,S[f(”g* ||.’I'5||E +&S5 Ve >0.
=1

"(b) = (a)“: We will show that not (b) = not (a):
Let v = (71,...,7%) € CF and let ¢ : E — C* be given by

p(z) = (frlz), f2(2), ..., fr(T)).
Then (a) can be rephrased as follows

v € @o(Bg) (closure in C¥)
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and not (a) means v € @(Bg), i.e., {7} and ¢(Bg) can be striclty separated in
C* by a hyperplane, i.e., there exist 8 = (81,...,8;) € CF = (CF)* and o € R
such that for all x € Bg

k

Re(B(p(x))) = Re(B - ¢(x)) = Re > _ Bifi(x)

=1
k
<a< Re(B-v)= ReZ,&’jﬂn.
=1

Therefore (take sup over ||z|| < 1)

k k k
1D Bifil <a<Red By <> Bl

=1
i.e., not (b) is true! O

Lemma 7.26. Let E be a Banach space. Then J(Bg) is dense in Bp«- w.r.t.
the weakx topology o(E**, E*) on E**. Consequently, J(E') is dense in E**
w.r.t. the weakx topology o(E**, E*) on E**.

Proof. Let & € Bg-+- and V be a neighborhood of £ in o(E**, E*). Need to show
VnJ(Bg) # 0. As usual, we may assume that V is of the form

for some f1,... fr € E*, e > 0.
We have to find x € Bg with J(x) € V|, i.e.,

|filz) —&(f)l<e Vi=1,...k.
Set v; := &(f1). By Lemma 7.25 we need to check

k k
1> "8l < 1D 8l
1=1 =1

but this is clear since

k k

k
> Bm=2 BiEf) =£Q_Bf) (£€E™)

=1 =1 =1

S0

k k k
| E Bl = |§(§ Bufi) < || E Bifille~ 1&g~ -
=1 =1 =1 -

O

Remark 7.27. J(Bg) is always closed in Bg+- in the strong topology on E**!
Indeed, if &, = J(x,) — £ then, since J is an isometry, x, must be Cauchy in
Bg, so x, — x and § = J(x). Thus J(Bg) is not dense in Bg+- in the strong
topology unless J(Bg) = Bg+-, i.e., E is reflexive!
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Continuing the proof of Theorem 7.24 7 <=*:
The canonical injection .J : E — E** is always continuous from o(E, E*) into
o(E**, E*) since for fixed f € E*,x — (Jx)(f) = f(Jz) is continuous w.r.t.
o(E, E*). Assuming that Bg is weakly compact (i.e., in o(E, E*) topology) we
see that J(Bg) is compact and thus closed in E** w.r.t. o(E**, E*).
But by Lemma 7.26, J(Bg) is dense in Bg-- for the same topology! Therefore
J(Bg) = Bg-+, hence J(FE) = E**, i.e., F is reflexive. [

Theorem 7.28. Assume that E is a reflexive Banach space and (x,,), C E a
bounded sequence. Then there exists a subsequence (x,,) that converges weakly.

Remark 7.29. A result of Eberlein-Smulian says that if E is a Banach space
such that every bounded sequence has a weakly convergent subsequence then E
is reflexive! (See Holmes: Geometric Functional Analysis and its Applications,
Springer, 1975).

Proposition 7.30. Let E be a reflexive Banach space and M C FE a closed
linear subspace of E. Then M is reflexive.

Proof. M, equipped with the norm from £ has a-priori two distinct weak topolo-
gies:

(a) the topology induced by o(E, E™)

(b) its own weak topology (M, M™).

Fact: these two topologies are the same since by Hahn-Banach, every continuous
linear functional on M is the restriction of a continuous linear functional on E'

By Theorem 7.24 we need to check that Bj; is compact in the weak topology
o(M,M?*), or equaivalently, in the topology o(E, E*)! We know that Bg is
compact in the weak topology and since M is (strongly) closed and convex it is
also weakly closed by Theorem 7.10. So By = M N Bg is weakly compact! [O

Corollary 7.31. A Banach space FE is reflexive if and only if E* is reflexive.

Proof. ”=>“: Roughly: E** = FE = E*** = E*.
More precisely, let J : E — E** be the canonical isometry. Let ¢ € E***. The
map

z > fol@) = (I ())

is a continuous linear functional on F, so f € E*.
Note:

p(J(x)) = f(z) = (J(x))(f) VzeE, J(z)e E™. (%)

By assumption J : E — E™** is surjective so for every £ € E** z € E £ = J(x).
So (*) yields

w(&) =&(f) VE€e E™,

i.e., the canonical injection F* — E*** is surjective.

7<= Let E” be reflexive. By "= above we know that EF** is reflexive. Since
J(E) € E** is a closed subspace in the strong topology, Theorem 7.30 yields
that J(FE) is reflexive. Thus FE' is reflexive! (.
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Corollary 7.32. Let E be a reflexive Banach space, K C E a bounded, closed
and convex subset. Then K is compact in the weak topology o(E, E*).

Proof. By Theorem 7.10 K is closed in the weak topology. Since K is bounded
there exists m € N with K € mBg and mBg is weakly compact by Theorem
7.24. So K is a weakly closed subset of a weakly compact set and thus K is
weakly compact. O

Corollary 7.33. Let E be a reflerive Banach space and let A C E be non-empty,
closed and convex. Lel ¢ : A — (—o0,x] be a convex lower semi-continuous
(l.s.c.) function such that ¢ % +oc and

lim p(xr) = oo (no assumption if A is bounded). (k)
z€A, |lz||— o0

Then @ achieves its minimum on A, i.e., there exists some xg € A such that
SN = AR,
p(zo) = inf o(x)
Proof. Fix any a € A such that ¢(a) < oo and define
A= {z € Alp(z) < p(a)}.

Then A is closed, convex and bounded (by (#%)) and thus compact in the weak
topology o(FE, E*) by Corollary 7.32! By Corollary 7.13, ¢ is also L.s.c. in the
weak topology o(E, E*) (since ¢ is convex and strongly l.s.c). ~
Let (zn), C A be a minimizing sequence in A (i.e, z, € A,p(x,) —
inf__ 5 ¢(x)). Since A is weakly compact, (,), has a weakly convergent sub-
sequence, i.e.
zo = weak — lim x, exists
0o z

for some subsequence (:EnJ ); of (z,). Since A is weakly closed it follows that
zp € A and by the weak l.s.c. property of ¢ we get

inf p(z) < p(xo) < liminf p(x,,) = inf @(z)

x€A l—oc rxeEA
so w(xq) =.inf$€fi w(x).
Ifx e A\ A, then

w(xo) < p(a) < p(x),
thus p(z0) < @(x) Vx € A. O

Remark 7.34. Corollary 7.33 is the main reason why reflerive spaces and
convex funclions are so important in many problems in the calculus of variations.

7.6 Separable spaces

Definition 7.35. A melric space E is separable if there exists a countable dense
subset D C E.
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Note: Many important spaces are separable. Finite-dimensional spaces are
separable, also L?” and I”,1 < p < oo are separable. C(K), K compact, is
separable, but L and [°® are not separable.

Proposition 7.36. Let FE be a separable metric space and F C FE any subset.
Then F is separable.

Proof. Let (u,)n, € E be a countable dense subset of E and r,,, > 0,7, — o0
as m — oo. Choose any point a,, , € B, (u,) N F whenever this is non-empty.
Then (@ n)m.n is countable and dense in F. O

Theorem 7.37. Let E be a Banach space such that E* is separable. Then E
is separable.

Remark 7.38. The converse is not true! E.q., E = L' is separable, but E* =
L=° is not.

Proof. Let (fn)nen be countable and dense in E*. Since || f.|| = ||fulles =
SUP.c g ||z| z=1 | fn(Z)|, there is some z,, € E such that

1
|lzn|l =1 and |[fun(zn)| = §||fn” (*)

Let L be the vector space over F generated by the (z,,)nen (i.e., the set of finite
linear combinations of the x,,).

Claim 1: L is dense in E.

Indeed, according to Remark 5.28 we have to check that any f € FE* which
vanishes on L must be identically zero.

Given £ > 0 3N € N such that ||f — fn|| < . Then

1Al < f = Fnll + 1 fwll-

Note that since f(xx) = 0 (f vanishes on L) and (*) we have

%IIfNII < |lIn(En)l = I = fn)@n)l < I1f = Inllllzxl = I1f = Fxdl-
So
Wl < f — fnll + 20 f — full < 3e

and since this holds for all £ > 0, || f|| = 0, i.e., f = 0.

If F = R, let Ly be the vector space over (Q generated by the (z,),. HF =C
let Ly be the vector space over QQ + iQQ generated by the (z,),. lL.e., the set of
all finite linear combinations with coefficients in @, resp. in QQ + Q.

Then Lg is dense in L and hence dense in F (since L is dense in E by Claim
1):

Claim 2: Lg is countable!
Indeed, for n € N let A,, be the vector space over @@, resp. over Q+i(Q, generated
by (zi)1<k<n. An is countable and

LO - U An
neM

is countable, as a countable union of countable sets. [}
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Corollary 7.39. Let E be a Banach space. Then E is reflexive and separable
if and only if E* is reflexive and separable.

Proof. We already know by Theorem 7.37 and Corollary 7.31 that

E*reflexive and separable = FEreflexive and separable.

Conversely, if E' is reflexive and separable, then E** = J(FE) is reflexive and
separable. Since E** = (E*)*, the "=" direction applied to E* yields F reflexive
and separable. ([

There is also a connection between separability and metrizability of the weak
topologies.

Theorem 7.40. Let E be a separable Banach space. Then Bpg- is metrizable
in the weaks topology o(E™*, E). Conversely, if Bp~ is metrizable in o(E*, F),
then E* is separable.

There is a dual statement.

Theorem 7.41. Let E be a Banach space such that E* is separable. Then Bg
1s metrizable in the weak topology o(E, E*). Conversely, if B is metrizable in
o(E,E™), then E* is separable.

Proof of Theorem 7.40. Let (x,), € Bpg be a dense countable subset of Bg.
For f € E* set

oo

)= 5l @)l

n=1

Then [-] is a norm on E* and [f] < || f||g= (Why?). Put d(f,g) := [f — g]. We
have to show that the topology induced bu d on Bg- is the same as the weakx
topology o(E*, E) restricted to Bg.

Step 1: Let fo € Bg+ and V a neighborhood of f; in o(£*, E). Have to find
some r > 0 such that

U, = {f € Bg-1d(f, fo) <t} C V.
As before, we can assume that V is of the form
V={feBe||(f—fo)w)l <e, Vi=1,...,k}
for some £ > 0,y1,...,yx € E.

Wolioig:;: linll < 1 3= 1wk
Since (&, ), is dense in Bg, we know that Vi = 1,...,k,3n; € N such that

€
ly: = zn.ll < 7-
Choose r > 0 small enough such that
! g
P Al oy = : P
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Claim: U, c V!
Indeed, if

oo

r>d(f, fo) = D 5 l(f — fo) (an,)]
n=1

then

23” I = foX(@a )l € Vo =105k
Hence, forz=1,....k

I(f = fO)(yz)l == |(f _— fO)(yz s 1711.5) i (f e fO)(wni)l
= Hf e folllIy‘i — Ty, u+l(f e fO)(Iﬂ.-i )Jl <Eg
<2 s <%

so feV.

Step 2: Let fo € Bg-. Given r > 0, we have to find some neighborhood V in
o(E*, FE) such that

VcU-={f¢€ Bg-

d(f* fO) < 7'}'

We choose V' to be of the form

with £ and & to be determined so that V' < U.
If f € V, then

o0

d(f, fo) = 3 5= l(F = fo)(@a)
n=1
k i oo 1
=D onl(f = fo)(@n)l+ D o |(f — fo)(@a)|
n=1 2’5 n=k-41 ;2
< e+ 2 Z %—5+2k 5
n=k-1

so it is enough to take £ = § and k € N such that y—l_f < £

Conversely, suppose that Bg- is metrizable in o(E*, E') and let us prove that
I’ is separable.
Set
1
U, :={f € Be-| d(f,0) < ;}

and let V,, be a neighborhood of 0 in o(FE*, F) such that V,, C U,,. Again, we
may assume that V,, has the form

Vi :={f € Be+| |f(z)| <&, Vx € ®,,}

Yo
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