

جامعة الانبار

كلية التربية للعلوم الصرفة

قسم الرياضيات / ماجستير

مقرر: التحليل الدالي

المحاضرة الاولى (8)

(المصدر)

Lectures Notes in Functinoal Analysis WS 2012 – 2013

with $\varepsilon_n > 0$ and Φ_n some finite subset of E. Set

$$D := \bigcup_{n \in \mathbb{N}} \Phi_n$$

so that D is countable.

<u>Claim:</u> The vector space generated by D is dense in E (this implies E is separable!).

Suppose $f \in E^*$ is such that $f(x) = 0 \ \forall x \in D$. Then $f \in V_n \subset U_n \ \forall n \in \mathbb{N}$. Thus $f \equiv 0$ (i.e., span(D) is dense in E).

"Proof of Theorem 7.41": The implication

$$E^*$$
 separable \Rightarrow B_E is metrizable in $\sigma(E, E^*)$

is exactly as above.

The proof of the converse is trickier (where does the above argument break down?). See Dunford-Schwartz: Linear Operators, Interscience, 1972.

Corollary 7.42. Let E be a Banach space and $(f_n)_n$ a bounded sequence in E^* . Then there exists a subsequence $(f_{n_l})_l$ that converges in the weak* topology $\sigma(E^*, E)$.

Proof. W.l.o.g. $||f_n|| \le 1 \ \forall n \in \mathbb{N}$. The set B_{E^*} is compact (by Banach-Alaoglu) and metrizable (by Theorem 7.40) in the weak* topology $\sigma(E^*, E)$. So every sequence in B_{E^*} has a convergent subsequence!

Proof of Theorem 7.28. Let $M_0 = span(x_n, n \in \mathbb{N})$ and $M = \overline{M_0}$. Clearly M is separable and $M \subset E$ is also reflexive (by Theorem 7.30). Thus $B_M =$ unit ball in M is compact and metrizable in the weak topology $\sigma(M, M^*)$, since M^* is separable (see Corollary 7.39 and Theorem 7.40). Hence there exists a subsequence $(x_{n_l})_l$ which converges weakly w.r.t. $\sigma(M, M^*)$ and hence $(x_{n_l})_l$ converges weakly w.r.t. $\sigma(E, E^*)$ also (see Proof of Theorem 7.30).

7.7 Uniformly convex spaces

Definition 7.43. A Banach space E is uniformly convex if $\forall \varepsilon > 0 \exists \delta > 0$ such that

$$x,y \in E, \|x\| \leq 1, \|y\| \leq 1, \ \ and \ \|x-y\| > \varepsilon \quad \Rightarrow \quad \left|\left|\frac{x+y}{2}\right|\right| < 1-\delta.$$

This is a geometric property of the unit ball. If one slides a ruler of length $\varepsilon > 0$ in the unit ball, then its midpoint must stay within a ball of radius $1 - \delta$ for some $\delta > 0$, i.e., it measures how round the unit sphere is.

Example. (1) $E = \mathbb{R}^2$, $||x||_2 = (x_1^2 + x_2^2)^{\frac{1}{2}}$ is uniformly convex. Here the curvature of the unit sphere is positive. But

$$||x||_1 = |x_1| + |x_2|$$
 (Manhattan norm)
 $||x||_{\infty} = \max(|x_1|, |x_2|)$

are not uniformly convex. They both have a flat surface!

(2) L^p spaces are uniformly convex for 1 . Any Hilbert space is uniformly convex.

Theorem 7.44. [Milman-Pettis] Every uniformly convex Banach space is reflexive.

Note:

 Uniform convexity is a geometric property of the norm, an equivalent norm need not be uniformly convex.

Reflexivity is a **topological property**: a reflexive space remains reflexive for an equivalent norm.

Thus Theorem 7.44 is somewhat surprising: a geometric property implies a topological property.

Uniform convexity is often used to prove reflexivity, but this is only sufficient. There are (weird) reflexive Banach spaces that do not have any uniformly convex equaivalent norm!

Proof. Assume E is a real Banach space. Let $\xi \in E^{**}$, $\|\xi\| = 1$ and $J : E \to E^{**}$ be the canonical injection given by

$$J(x)(f) := f(x) \quad \forall f \in E^*, x \in E.$$

Have to show: $\xi \in J(B_E)$.

Since J is an isometry, $J(B_E) \subset E^{**}$ is closed in the strong topology on E^{**} . So it is enough to show

$$\forall \varepsilon > 0 \ \exists x \in B_E \text{ such that } \|\xi - J(x)\| \le \varepsilon.$$
 (*)

Fix $\varepsilon > 0$ and let $\delta = \delta_{\varepsilon} > 0$ be the modulus of uniform convexity. Choose some $f \in E^*$ with ||f|| = 1 and

$$\xi(f) > 1 - \frac{\delta}{2}$$
 (if E is real, otherwise work with $Re\xi(f)$).

This is possible since $\|\xi\| = 1$. Set

$$V := \{ \eta \in E^{**} | |(\eta - \xi)(f)| < \frac{\delta}{2}$$

so $\xi \in V \in \sigma(E^{**}, E^*)$.

Since $J(B_E)$ is dense in $B_{E^{**}}$ w.r.t. weak* topology $\sigma(E^{**}, E^*)$ thanks to Lemma 7.26 we have $V \cap J(B_E) \neq \emptyset$. Thus there is $x \in B_E$ such that $J(x) \in V!$ Claim: x satisfies (*).

If not, then $\|\xi - J(x)\| > \varepsilon$, i.e.

$$\xi \in (J(x) + \varepsilon B_{E^{**}})^c := W \in \sigma(E^{**}, E^*)$$
 (since $B_{E^{**}}$ is closed in $\sigma(E^{**}, E^*)$).

Then, again by Lemma 7.26, it follows $V \cap W \cap J(B_E) \neq \emptyset$, i.e.

$$\exists y \in B_E \text{ such that } J(y) \in V \cap W \subset V.$$

Note: Since $J(y) \in W$, we have $||J(x) - J(y)|| \ge \varepsilon$, and since J is isometric, we must have

$$||x - y|| > \varepsilon. \tag{**}$$

Since $J(x), J(y) \in V$ we have the inequalities

$$\frac{\delta}{2} > |(J(x) - \xi)(f)| = |f(x) - \xi(f)| \ge \xi(f) - f(x)$$

$$\frac{\delta}{2} > |(J(y) - \xi)(f)| = |f(y) - \xi(f)| \ge \xi(f) - f(y)$$

$$\Rightarrow 2\xi(f) < f(x + y) + 2\delta \le ||x + y|| + \delta$$

or

$$\left|\left|\frac{x+y}{2}\right|\right|>\xi(f)-\frac{\delta}{2}>1-\frac{\delta}{2}-\frac{\delta}{2}=1-\delta.$$

But by uniform convexity, this means

$$||x - y|| < \varepsilon$$

contradicting (**).

Proposition 7.45. Let E be a uniformly convex Banach space and $(x_n)_n \subset E$ with $x_n \rightharpoonup x$ weakly in $\sigma(E, E^*)$ and

$$\limsup ||x_n|| \le ||x||. \tag{I.20}$$

Then $x_n \to x$ strongly.

Remark. We always have $x_n \to x \Rightarrow ||x|| \le \liminf ||x_n||$ (by Proposition 7.7), so (I.20) says that the sequence $||x_n||$ does not loose "mass" as $n \to \infty$.

Proof. Assume $x \neq 0$ (otherwise trivial).

Idea: renormalize!

Set

$$\lambda_n := \max(\|x_n\|, \|x\|), \quad y_n := \frac{1}{\lambda_n} x_n, \quad y := \frac{x}{\|x\|}, \quad \text{so } \|y_n\| \le 1, \|y\| = 1.$$

Note: $y_n \to y$ strongly implies $x_n \to x$ strongly (check this!).

Further note $\lambda_n \to \lambda$ and hence (since $x_n \rightharpoonup x$ weakly), $y_n \rightharpoonup y$ weakly (check this!). Thus

$$\frac{y_n+y}{2} \rightharpoonup y$$

and by Proposition 7.7

$$1 = ||y|| = \left| \left| \frac{y+y}{2} \right| \right| \le \liminf \underbrace{\left| \left| \frac{y_n+y}{2} \right| \right|}_{\le \frac{1}{2} (||y_n||+||y||) \le 1}$$

$$\Rightarrow \left| \left| \frac{y_n + y}{2} \right| \right| \to 1 \quad \text{as } n \to \infty.$$

By the uniform convexity we get

$$||y_n - y|| \to 0$$
 as $n \to \infty$,

i.e., $y_n \to y$ strongly.

8. L^P SPACES 71

8 L^p spaces

Some notation: $(\Omega, \mathcal{A}, \mu)$ measure space, i.e., Ω is a set and

- (i) \mathcal{A} is a σ -algebra in Ω : a collection of subsets of Ω (so $\mathcal{A} \subset \mathcal{P}(\Omega)$) such that
 - (a) ∅ ∈ A
 - (b) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
 - (c) $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$ whenever $A_n \in \mathcal{A} \ \forall n \in \mathbb{N}$
- (ii) μ is a measure, i.e., $\mu: \mathcal{A} \to [0, \infty]$ with
 - (a) $\mu(\emptyset) = 0$
 - (b) $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ whenever $(A_n)_n \subset \mathcal{A}$ are disjoint

We will also assume that

(iii) Ω is σ -finite, i.e., there exist $\Omega_n \in \mathcal{A}, n \in \mathbb{N}$ which exhaust Ω , i.e., $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$, and $\mu(\Omega_n) < \infty \ \forall n \in \mathbb{N}$.

The sets $N \in \mathcal{A}$ such that $\mu(N) = 0$ are called null sets.

A property holds almost everywhere (a.e.) or for almost all $x \in \Omega$, if it holds everywhere on $\Omega \setminus N$, where N is a null set.

See Bauer: Measure theory, 4th edition, and the handout for details on **measurable functions** $f: \Omega \to \mathbb{R}$ (or $\Omega \to \mathbb{C}$).

We denote by $L^1(\Omega, \mu)$ (or simply $L^1(\Omega)$, or just L^1) the space of integrable function from Ω to \mathbb{R}/\mathbb{C} .

We often write $\int f = \int f d\mu = \int_{\Omega} f d\mu$,

$$||f||_1 = ||f||_{L^1} = \int_{\Omega} |f| d\mu = \int |f|.$$

As usual, we identify functions which coincide a.e.!

8.1 Some results from integration everyone must know

Theorem (Monotone convergence, Beppo-Levi). Let $(f_n)_n$ be a sequence of non-negative functions in L^1 which is increasing,

$$f_1 \leq f_2 \leq \cdots \leq f_n \leq f_{n+1} \leq \ldots a.e.$$
 on Ω ,

and bounded, $\sup_{n\in\mathbb{N}}\int f_n d\mu < \infty$. Then

$$f(x) := \lim_{n \to \infty} f_n(x)$$

exists a.e., $f \in L^1$, and $||f - f_n||_{L^1} \to 0$.

Theorem (Dominated convergence, Lebesgue). Let $(f_n)_n \subset L^1$ be such that

(a)
$$f_n(x) \to f(x)$$
 a.e. on Ω

(b) there exists $g \in L^1$ such that for all $n \in \mathbb{N}$

$$|f_n(x)| \le g(x)$$
 a.e.

Then $f \in L^1$ and $||f_n - f||_1 \to 0$.

Lemma (Fatou). Let $(f_n)_n \subset L^1$ with

- (a) $\forall n \in \mathbb{N} : f_n(x) \geq 0$ a.e.
- (b) $\sup_{n\in\mathbb{N}} \int f_n d\mu < \infty$

Set $f(x) := \liminf_{n \to \infty} f_n(x) \le \infty$. Then $f \in L^1$ and

$$\int f d\mu \le \liminf_{n \in \mathbb{N}} \int f_n d\mu.$$

Basic example: $\Omega = \mathbb{R}^d$, $\mathcal{A} = \text{Borel-measurable sets}$ (or Lebesgue-measurable sets) and $\mu = \text{Lebesgue measure on } \mathbb{R}^d$.

Notation: $C_c(\mathbb{R}^d)$ = space of continuous functions on \mathbb{R}^d with compact support, i.e.,

$$C_c(\mathbb{R}^d) = \{ f \in C(\mathbb{R}^d) | \exists K \subset \mathbb{R}^d \text{ compact such that } f(x) = 0 \ \forall x \in K^c \}.$$

Theorem (Density). $C_c(\mathbb{R}^d)$ is dense in $L^1(\mathbb{R}^d)$, i.e., $\forall f \in L^1(\mathbb{R}^d) \forall \varepsilon > 0 \ \exists g \in C_c(\mathbb{R}^d)$ with $||f - g||_1 < \varepsilon$.

The case of product measures (and spaces): $(\Omega, \mathcal{A}_1, \mu_1), (\Omega, \mathcal{A}_2, \mu_2)$ two σ -finite measure spaces

$$\Omega := \Omega_1 \times \Omega_2$$

$$A = A_1 \otimes A_2$$

$$\mu = \mu_1 \otimes \mu_2$$
 by $\mu(A_1 \times A_2) := \mu_1(A_1) \cdot \mu_2(A_2) \ \forall A_1 \in A_1, A_2 \in A_2.$

Theorem (Tonelli). Let $F(=F(x,y)): \Omega_1 \times \Omega_2 \to [0,\infty]$ be measurable and

(a)
$$\int_{\Omega_2} F(x,y) d\mu_2 < \infty$$
 a.e. in Ω_1 ,

(b)
$$\int_{\Omega_1} \left(\int_{\Omega_2} F(x, y) d\mu_2 \right) d\mu_1 < \infty.$$

Then $F \in L^1(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2)$ and

$$\int_{\Omega_1} \left(\int_{\Omega_2} F(x, y) d\mu_2 \right) d\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} F(x, y) d\mu_1 \right) d\mu_2
= \int_{\Omega_1 \times \Omega_2} F(x, y) d(\mu_1 \otimes \mu_2).$$

Theorem (Fubini). If $F \in L^1(\Omega_1 \times \Omega_2)$, i.e.,

$$\int_{\Omega_1 \times \Omega_2} |F(x,y)| d(\mu_1 \otimes \mu_2) < \infty,$$

then

8. L^P SPACES 73

(a) for a.e.
$$x \in \Omega_1 : F(x, \cdot) \in L^1(\Omega_2)$$
 and $\int_{\Omega_2} F(x, y) d\mu_2 \in L^1_x(\Omega_1)$

(b) for a.e.
$$y \in \Omega_2 : F(\cdot, y) \in L^1(\Omega_1)$$
 and $\int_{\Omega_1} F(x, y) d\mu_1 \in L^1_y(\Omega_2)$

Moreover

$$\int_{\Omega_1} \left(\int_{\Omega_2} F(x, y) d\mu_2 \right) d\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} F(x, y) d\mu_1 \right) d\mu_2$$

$$= \int_{\Omega_1 \times \Omega_2} F(x, y) d\mu_1 d\mu_2.$$

8.2 Definition and some properties of L^p spaces

Definition 8.1. • $1 \le p < \infty$:

$$L^p = L^p(\Omega, \mathbb{F}) := \{ f : \Omega \to \mathbb{F} | f \text{ is measurable and } | f | f \in L^1 \},$$

$$||f||_p := ||f||_{L^p} := \left(\int\limits_{\Omega} |f(x)|^p d\mu\right)^{\frac{1}{p}}.$$

• $p = \infty$:

 $L^{\infty} = L^{\infty}(\Omega, \mathbb{F}) := \{ f : \Omega \to \mathbb{F} | f \text{ is measurable and there exists a constant } C < \infty \text{ such that } |f(x)| \leq Ca.e. \text{ on } \Omega \},$

$$||f||_{\infty} := ||f||_{L^{\infty}} := \inf(C||f(x)| \le Ca.e. \text{ on } \Omega\} =: esssup_{x \in \Omega}|f(x)|.$$

Remark. If $f \in L^{\infty}$ then

$$|f(x)| \leq ||f||_{\infty}$$
 a.e. on Ω .

Indeed, by definition of $||f||_{\infty}$, there exists $C_n \searrow ||f||_{\infty}$ (e.g. $C_n = ||f||_{\infty} + \frac{1}{n}$) such that

$$|f(x)| \leq C_n$$
 a.e. on Ω ,

i.e., $\exists N_n \text{ such that } |f(x)| \leq C_n \ \forall x \in \Omega \setminus N_n \text{ and } \mu(N_n) = 0.$ Set $N := \bigcup_n N_n \text{ and note}$

$$\mu(N) \le \sum_{n \in \mathbb{N}} \mu(N_n) = 0$$

and for all $n \in \mathbb{N}$:

$$|f(x)| \le C_n \quad \forall x \in \Omega \setminus N$$

$$\Rightarrow |f(x)| \le ||f||_{\infty} \quad \forall x \in \Omega \setminus N.$$

Notation: If $1 \le p \le \infty$, then p' given by $\frac{1}{p} + \frac{1}{p'} = 1$ is the **dual exponent** of p.

Theorem 8.2 (Hölder). Let $f \in L^p$ and $g \in L^{p'}$ with $1 \leq p \leq \infty$. Then $fg \in L^1$ and

$$||fg||_1 \le ||f||_p ||g||_{p'}.$$

Proof. Obvious for p = 1 or $p = \infty$.

So assume $1 , and note that for all <math>a, b \ge 0$

$$\begin{split} ab &= \frac{1}{p}a^p + ab - \frac{1}{p}a^p \\ &\leq \frac{1}{p}a^p + \sup_{b \geq 0}(ab - \frac{1}{p}a^p) \\ &= \frac{1}{p}a^p + \frac{1}{p'}b^{p'} \quad \text{(also called Young's inequality)} \end{split}$$

Thus

$$|f(x)g(x)| \le \frac{1}{p}|f(x)|^p + \frac{1}{p'}|g(x)|^{p'}$$
 a.e.
 $\in L^1 \text{ since } f \in L^p, g \in L^{p'}.$

Moreover,

$$\int |fg|d\mu \le \frac{1}{p} ||f||_p^p + \frac{1}{p'} ||g||_{p'}^{p'}.$$

So for $\lambda > 0$,

$$\int |fg|d\mu = \int |\lambda f \frac{1}{\lambda} g|d\mu \le \frac{1}{p} ||\lambda f||_p^p + \frac{1}{p'} ||\lambda^{-1} g||_{p'}^{p'}$$
$$= \frac{\lambda^p}{p} ||f||_p^p + \frac{\lambda^{-p'}}{p'} ||g||_{p'}^{p'} = h(\lambda).$$

Minimizing over $\lambda > 0$ yields the claim, since

$$\inf_{\lambda>0} h(\lambda) = ||f||_p ||g||_{p'} \quad \text{(check this!)}$$

Remark. There is a very useful extension of Hölder in the form: If f_1, f_2, \ldots, f_k are such that $f_j \in L^{p_j}$ for $1 \le j \le k$ and $\frac{1}{p} = \sum_{j=1}^k \frac{1}{p_j}$, then $f = f_1 \cdot f_2 \cdot \ldots \cdot f_k \in L^p$ and

$$||f||_p \le \prod_{j=1}^k ||f_j||_{p_j}.$$

In particular, if $f \in L^p \cap L^q$ for some $1 \le p \le q \le \infty$, then $f \in L^r$ for all $p \le r \le q$ and

$$||f||_r \le ||f||_p^{\theta} ||g||_q^{1-\theta} \quad with \ \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}, \ 0 \le \theta \le 1.$$

8. L^P SPACES 75

Theorem 8.3. L^p is a vector space and $\|\cdot\|_p$ is a norm for any $1 \leq p \leq \infty$.

Proof. The cases p=1 and $p=\infty$ are easy, so assume $1 . If <math>f, f \in L^p$, then

$$|f+g|^p \le (|f|+|g|)^p \le (2\max(|f|,|g|))^p$$

= $2^p \max(|f|^p,|g|^p) \le 2^p (|f|^p + |g|^p) \in L^p$.

Moreover,

$$||f+g||_p^p = \int |f+g|^{p-1}|f+g|d\mu$$

$$\leq \int |f+g|^{p-1}|f|d\mu + \int |f+g|^{p-1}|g|d\mu. \tag{*}$$

Note that $p' = \frac{p}{p-1}$, so

$$(|f+g|^{p-1})^{p'} = |f+g|^p \in L^1$$

so $|f+g|^{p-1} \in L^{p'}$ and by Hölder, (*) yields

$$||f+g||_p^p \le |||f+g|^{p-1}||_{p'}(||f||_p + ||g||_p) = ||f+g||_p^{p-1}(||f||_p + ||g||_p).$$

Since $||f + g||_p \leq \infty$, this yields

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Theorem 8.4 (Fischer-Riesz). L^p is a Banach space for $1 \le p \le \infty$.

Proof. We distinguish the cases $p = \infty$ and $1 \le p < \infty$.

Case 1: $p = \infty$: Let $(f_n)_n \subset L^{\infty}$ be Cauchy. Given $k \in \mathbb{N} \exists N_k \in \mathbb{N}$ such that $||f_m - f_n||_{\infty} \leq \frac{1}{k}$ for $m, n \geq N_k$. Hence there exists a set $E_k \subset \Omega, \mu(E_k) = 0$, such that

$$|f_m(x) - f_n(x)| \le \frac{1}{k} \quad \forall x \in \Omega \setminus E_k \text{ and all } m, n \ge N_k.$$

Put $E := \bigcup_{k \in \mathbb{N}} E_k$, note $\mu(E) = 0$ and

$$\forall x \in \Omega \setminus E : |f_m(x) - f_n(x)| \le \frac{1}{k} \text{ for all } m, n \ge N_k,$$
 (*)

that is, the sequence $(f_n(x))_n$ is Cauchy (in \mathbb{R}). So

$$f(x) := \lim_{n \to \infty} f_n(x)$$

exists for all $x \in \Omega \setminus E$ and we simply set f(x) := 0 for $x \in E$. Letting $m \to \infty$ in (*), we also see

$$|f(x) - f_n(x)| \le \frac{1}{k} \quad \forall x \in \Omega \setminus E \text{ and all } n \ge N_k.$$

So

$$|f(x)| \le \underbrace{|f(x) - f_n(x)|}_{\le \frac{1}{k}} + \underbrace{f_n(x)}_{\le ||f_n||_{\infty}}$$
 for a.a. $x \in \Omega$.

Hence $f \in L^{\infty}$ and $||f - f_n||_{\infty} \leq \frac{1}{k}$ for all $n \geq N_k$. Thus $f_n \to f$ in L^{∞} ! Case 2: $1 \leq p < \infty$:

Step 1: Let $(f_n)_n \subset L^p$ be Cauchy. It is enough to show that there is a subsequence $(f_{n_l})_l$ that converges to some $f \in L^p$. Indeed, assume that $f_{n_l} \to f$ in L^p . Then

$$||f - f_m||_p \le ||f - f_{n_l}||_p + ||f_{n_l} - f_m||_p,$$

so if $\varepsilon > 0$ there exists $N_1 \in \mathbb{N}$ such that

$$||f - f_{n_l}||_p < \frac{\varepsilon}{2} \quad \forall l \ge N_1$$

and there exists $N_2 \in \mathbb{N}$ such that

$$||f_n - f_m||_p < \frac{\varepsilon}{2} \quad \forall m, n \ge N_2.$$

Note that $n_l \geq n$ (because of subsequence) so

$$||f_{n_l} - f_m||_p < \frac{\varepsilon}{2} \quad \forall l, m \ge N_2.$$

Hence for $l \geq \max(N_1, N_2)$ one has

$$||f - f_m||_p \le ||f - f_{n_l}||_p + ||f_{n_l} - f_m||_p < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall m \ge N_1,$$

i.e., f o f in L^p .

Step 2: There exists a subsequence (f_{n_l}) which converges in L^p . Extract a subsequence (f_{n_l}) such that

$$||f_{n_{l+1}} - f_{n_l}||_p \le \frac{1}{2^l} \quad \forall l \in \mathbb{N}.$$

(To see that this exists proceed inductively: Choose $n_1 \in \mathbb{N}$ such that $||f_m - f_n||_p < \frac{1}{2} \, \forall m, n \geq n_1$. Then choose $n_2 \geq n_1$ such that $||f_m - f_n||_p < \frac{1}{2^2} \, \forall m, n \geq n_2$, etc.).

Claim: f_{n_l} converges to some f in L^p . Indeed, writing f_l instead of f_{n_l} , we have

$$||f_{l+1} - f_l||_p < \frac{1}{2^l} \quad \forall l \in \mathbb{N}.$$

Set

$$g_n(x) := \sum_{l=1}^n |f_{l+1}(x) - f_l(x)|$$

and note that the sequence $(g_n)_n$ is increasing. Also note that

$$||g_n||_p \le \sum_{l=1}^n ||f_{l+1} - f_l||_p < \sum_{l=1}^n \frac{1}{2^l} < \sum_{l=1}^\infty \frac{1}{2^l} = 1.$$