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with £,, > 0 and ®,, some finite subset of F. Set

D := U@n

neM

so that D is countable.

Claim: The vector space generated by D is dense in I (this implies F is sepa-
rable!).

Suppose f € E* is such that f(z) = 0Vx € D. Then f € V,, c U, Vn € N.
Thus f = 0 (i.e., span(D) is dense in E). O

“Proof of Theorem 7.417: The implication
E™ separable = Bpg is metrizable in o(E, E™)

is exactly as above.
The proof of the converse is trickier (where does the above argument break
down?). See Dunford-Schwartz: Linear Operators, Interscience, 1972. (|

Corollary 7.42. Let E be a Banach space and (f,), a bounded sequence in
E*. Then there exists a subsequence (f,,); that converges in the weak* topology

o(E*, E).

Proof. W.l.o.g. || fnll < 1Vn € N. The set Bg- is compact (by Banach-Alaoglu)
and metrizable (by Theorem 7.40) in the weak* topology o(E*, E). So every
sequence in Bg. has a convergent subsequence! (!

Proof of Theorem 7.28. Let My = span(x,,n € N) and M = M,. Clearly M
is separable and M C FE' is also reflexive (by Theorem 7.30). Thus Bj; = unit
ball in M is compact and metrizable in the weak topology o(M, M™), since
M* is separable (see Corollary 7.39 and Theorem 7.40). Hence there exists a
subsequence (x,,); which converges weakly w.r.t. o(M,M*) and hence (z,,);
converges weakly w.r.t. o(FE, E*) also (see Proof of Theorem 7.30). [

7.7 Uniformly convex spaces

Definition 7.43. A Banach space E is uniformly convex if Ve > 036 > 0

such that

T4+y
2

s,y E |zl <1, |yl <1, and |z —y|| > = || || =1—5

This is a geometric property of the unit ball. If one slides a ruler of length
£ > 0 in the unit ball, then its midpoint must stay within a ball of radius 1 — ¢
for some d > 0, i.e., it measures how round the unit sphere is.

Example. (1) E = R2, |zl = (22 + 22)? is uniformly convex. Here the
curvature of the unit sphere is positive.
But

[|z|l1 = |z1| + |xz2| (Manhattan norm)

|z]|co = max(|21], |22])

are not uniformly convex. They both have a flat surface!
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(2) LP spaces are uniformly convex for 1 < p < oo. Any Hilbert space is
uniformly convex.

Theorem 7.44. [Milman-Pettis) Fvery uniformly convex Banach space is re-
flezive.

Note:

e Uniform convexity is a geometric property of the norm, an equivalent
norm need not be uniformly convex.
Reflexivity is a topological property: a reflexive space remains reflexive
for an equivalent norm.
Thus Theorem 7.44 is somewhat surprising: a geometric property implies
a topological property.

e Uniform convexity is often used to prove reflexivity, but this is only suf-
ficient. There are (weird) reflexive Banach spaces that do not have any
uniformly convex equaivalent norm!

Proof. Assume FE is a real Banach space. Let £ € E** ||| =1and J : £ — E**
be the canonical injection given by

J(z)(f) == f(x) VfeE*,z€E.

Have to show: & € J(Bg).
Since J is an isometry, J(Bg) C E** is closed in the strong topology on E**.
So it is enough to show

Ve > 0 do € Bg such that || — J(z)|| < e. (%)

d0- > 0 be the modulus of uniform convexity. Choose some

Fix e > 0 and let § =
=1 and

f € E* with || f]|
E(f)>1-— % (if E is real, otherwise work with Re&(f)).

This is possible since ||£] = 1.

Set

Vi={ne B -l < 3

so§ eV e€o(E*™, E).
Since J(Bpg) is dense in Bg-« w.r.t. weaks* topology o(E**, E*) thanks to
Lemma 7.26 we have VN .J(Bg) # (0. Thus there is # € Bg such that J(x) € V!

Claim: x satisfies ().
If not, then ||£ — J(x)|| > ¢, i.e.

£ € (J(x) +eBg=+)° =W € o(E*™,E") (since Bg-+ is closed in o(E™™, E™)).
Then, again by Lemma 7.26, it follows VN W N .J(Bg) # 0, i.e.

Jdy € B such that J(y) e VN W cC V.
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Note: Since J(y) € W, we have
must have

J(x) — J(y)|| = &, and since .J is isometric, we

|z — y|| > e. (k%)

Since J(x), J(y) € V we have the inequalities
S > (@) — W = (@) — £ = £(F) — ()
>|(J(@) =8N =) — &N = &) — fy)

NSy

=2(f)<flz+y)+20 < ||lz+y| + o

or
zry By B0 g
H 3 ||>&f)l—5g>1-5—5=1-¢
But by uniform convexity, this means
lz—y|l <e
contradicting (). O

Proposition 7.45. Let E be a uniformly convex Banach space and (x,), C E
with x,, — x weakly in o(E, E*) and

limsup ||z, || < ||z]|. (1.20)
Then x,, — x strongly.

Remark. We always have x,, — x = ||z|| < liminf ||z, || (by Proposition 7.7),
so (1.20) says that the sequence ||z, || does not loose “mass™ as n — oc.

Proof. Assume x # 0 (otherwise trivial).

Idea: renormalize!

Set
1 45

An = max(||z.l; |Z][); Yn = 2Fn, y:=7, so |yl <1yl =1.

An ||

Note: y,, — y strongly implies x,, — x strongly (check this!).

Further note A,, — A and hence (since z,, — = weakly), vy, — v weakly (check

this!). Thus

yn+y
) Y
and by Proposition 7.7
1=||y||=||y;—y < lim inf | %LTHH
<z Uly=lI+llyiH=<1
1 1
=>||1"T+/ — 1 asn — oo.

By the uniform convexity we get
lyn —yl| > 0 asn — oc,

i.e., y, — vy strongly. [
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8 L? spaces
Some notation: (€2, A, 1) measure space, i.e., {2 is a set and
(i) A is a o-algebra in 2: a collection of subsets of €2 (so A C P(£2)) such that

(a) De A
(b) Ac A= A€ A
(¢) Us—, A, € A whenever A, e AVneN

(ii) g is a measure, i.e., p: A — [0, 00] with
(a) (@) =0
o0
(b) (U2, An) = > 1(An) whenever (A,,), C A are disjoint
n=1

We will also assume that

(iii) 2 is o-finite, i.e., there exist €2,, € A,n € N which exhaust 2, i.e.,
Unen 2n = 2, and u(Q,) < oo Vn € N.

The sets N € A such that pu(N) = 0 are called null sets.

A property holds almost everywhere (a.e.) or for almost all z € €, if it holds
everywhere on 2\ N, where N is a null set.

See Bauer: Measure theory, 4th edition, and the handout for details on
measurable functions f: Q2 — R (or Q — C).

We denote by L'(€2, 1) (or simply L'(£2), or just L') the space of integrable
function from € to R/C.

We often write [ f = [ fdu = [ fdpu,

Q

wmﬂmm=/m@=/m.
Q

As usual, we identify functions which coincide a.e.!

8.1 Some results from integration everyone must know

Theorem (Monotone convergence, Beppo-Levi). Let (f,.)n. be a sequence of
non-negative functions in L' which is increasing,

fl < f2 Sl f-n. &= fn.+1 S L. Q€. 0N Sz-\
and bounded, sup, cy [ fandp < oo. Then
f(z) := 7115120 Frl )

erists a.e., f € L', and ||f — fallz: — O.

Theorem (Dominated convergence, Lebesgue). Let (f,), € L' be such that

(a) fn(x) — f(x) a.e. on Q2
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(b) there exists g € L' such that for alln € N
|fn(z)| < g(x) ae.

Then f € L' and ||fn — f]l1 = O.

Lemma (Fatou). Let (f,)n, € L' with

(a) Vn € N: f,(x) =0 a.e.

(b) SUPpen \] fndll' <0
Set f(x) := liminf, o fn(z) < oc. Then f € L' and

/fdu < luﬂelg}f / Jndp

Basic example: Q = R, A = Borel-measurable sets (or Lebesgue-measurable
sets) and ;2 = Lebesgue measure on R%.

Notation: C.(R?) = space of continuous functions on R? with compact sup-
port, i.e.,

C.(RY) = {f € C(R%)|3IK c R? compact such that f(z) = 0Vz € K°}.
Theorem (Density). C.(R?) is dense in L*(R?), i.e., Vf € LY (RY)Ve > 0 3g €
C.(R?) with ||f — g|1 < €.

The case of product measures (and spaces): (€2, Ay, 1), (€2, Az, pu2) two o-
finite measure spaces

Q= Ql X Qz

A=A Az

p=p1 @ ps by p(A; X Az) := pu1(A1) - ua(A2) YA, € Ay, Az € Aos.
Theorem (Tonelli). Let F(= F(z,y)) : 1 x Qs — [0, oc] be measurable and
(a) ﬁ] F(x,y)dus < oo a.e. in Q,

2

(b) [ ( J F(=, y)duz) dpy < oo.

2y, Qa2

Then F € LY(; x Qo, 1 @ po) and
/(/F(:z:,y)duz)dul = / (/F(;E,y)du])du.z
Ql Qg Qz Ql

=/ / F(x,y)d(p1 & p2).
leﬂz

Theorem (Fubini). If F € L'(; x Q5), i.e.,

| F(z, y)|d(p1 @ p2) < oo,
Sll XQZ

then
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(a) for a.e. x € Qy : F(x,-) € LY Q) and [ F(z,y)dus € LL(D)

Qs
(b) for a.e. y € Qs : F(-,y) € L'() and Qf F(z,y)du € L;(Qg)
Moreover
/(/F(m,y)duz)dln = / (/F(m, y)dl"l)dll'il
Ql Qz Qz Ql
= / / F(x,y)dpdus.
Ql XQz

8.2 Definition and some properties of L” spaces

Definition 8.1. e 1 <p<oo:

LP = LP(Q,F) := {f : Q — F|f is measurable and |f|” € L'},

170 = fller = ( [ 15@Pdn)”.
Q

® D =00’

L> = L>®(Q,F) :={f : Q@ — F|f is measurable and there exists a constant C < oo
such that |f(z)| < Ca.e. on Q},

[ fllos = [ fllzee := Inf(C| |f(z)] < Ca.e. on Q} =: esssupzeqn|f(z)|.
Remark. If f € L™ then
I f(z) < |flls a.e. on .

Indeed, by definition of || f|loc, there exists Crn i || flloo (€-9- Cr = || flloc + )
such that

|f(z)] < Cn  ae. onQ,

i.e., AN, such that |f(z)| < C, Vo € Q\ N,, and u(N,) = 0.
Set N := |J,, N and note

p(N) <> p(Nn) =0

neEN

and for all n € N :

If(z)| < Cn VzeQ\N

= |f(z)| < Iflle Yz € Q\N.
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1

Notation: If 1 < p < oo, then p’ given by ;1; = 1 is the dual exponent

of p.

Theorem 8.2 (Holder). Let f € LP and g € L? with 1 < p < oo. Then
fg e L' and

Ifglly < (I f1Inllgllp -

Proof. Obvious for p =1 or p = oc.
So assume 1 < p < oc, and note that for all a,b = 0

1 1

ab = —a? + ab — —a”
P P
1 1
< —a® + sup(ab — —a?)
P b=>0 2
1 ? g~ G o 5
= I—)a” + 'I7bp ( also called Young’s inequality)
Thus
1 o . 1 o
|f(x)g(x)] < ;If(il?)l + ;Ig(w)l a.e.
€ L' since fe LP,g € LY.
Moreover,
|Faldp < T1FIE + gl
gldp < IIF1I7 + 2 llgll -
So for A > 0,

1 1 | S
J1sotdu= [ 1ar5aldn < A+ A gl
3

——llgllzs = h(A).

AP
= — P
—I1£1I5 +

Minimizing over A > 0 yields the claim, since
inf h(\) = "
220 u(A) = [[fllpllgllpr  (chec is!)
[

Remark. There is a very useful extension of Holder in the form: If f1, fo, ..., f&
are such that f; € LPi for1 < j <k and% = Z§=1 %, then f= f1-fo-... fx €
L? and

k
||f“7) < H ”fj”p;-
Jj=1

In particular, if f € LP N LY for some 1 < p < q < oo, then f € L" for all
p<r<gq and
1—-6

1— gk 0 :
11l < I flipligllg™  with = =2+ ——, 0<6<1.
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Theorem 8.3. L? is a vector space and || - ||, is a norm for any 1 < p < oc.

Proof. The cases p =1 and p = oc are easy, so assume 1 < p < oc.
If f, f € LP, then

If +gl” < (Il + lg])? < (2max(|f].]g]))”
= 2P max(|f[?,|g]") < 2°(|fI" + |g|”) € L”.

Moreover,
nf+mz=/uwnP*V+mmt
< [1r+ g i1an+ [ 17+ gl gl (=)

Note that p’ = SO

e L
p—17
~1\*” 1
(If +glP)" =If+gPeL

so | f + g|P~! € LP" and by Holder, () yields

1f +gllp < I1f + gl”~ e (Lfllp + llgllp) = ILf + glZ~ ALf Nl + llgllp)-

Since || f + g||p < oc, this yields

If +gllp < I fllp + llgllp-

Theorem 8.4 (Fischer-Riesz). L? is a Banach space for 1 < p < oc.
Proof. We distinguish the cases p = oc and 1 < p < oc.
Case 1: p = oo: Let (fn)n € L be Cauchy. Given k£ € N dN; € N such that
llifrs = . Fnilloa = —}: for m,n > Nj. Hence there exists a set Ex C Q, u(Ex) = 0,
such that
1

| fin(x) — fr(x)]| < e Vx € Q\ Ex and all m,n > Ng.
Put E := J,cn B, note pu(E) = 0 and

Ve e Q\ E: |fm(x)— falz)]| < % for all m,n > Ny, (%)
that is, the sequence (f,(x)), is Cauchy (in R). So

f(@) = lim_ fa(a)

exists for all x € Q2 \ E and we simply set f(x) := 0 for x € E.
Letting m — oo in (*), we also see

Vz € Q\ FE and all n > Ni.

Ed
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So

|f(x)] < |f(x) — fa(x)|+ fo(x) for a.a. z€ Q.
~ - - ——

<t <l fnllee

Hence f € L*™® and ||f — falleo < % for all n > Np. Thus f,, — f in L°°!

Case 2: 1 < p < oc:

Step 1: Let (f.)n € LP be Cauchy. It is enough to show that there is a subse-
quence (fy, ) that converges to some f € LP. Indeed, assume that f,,, — f in
L?. Then

”f = fm“p < ”f = fnzllp RE ”f-n; = fm”p:
so if £ > 0 there exists N} € N such that
g =
If = Fulls < 5 VI2 Ny
and there exists N» € N such that

g
n -~ Jm <=

Note that n; = n (because of subsequence) so

Ym,n > Ns.

Vfoi = Fnllos Vim = Ny,
Hence for I > max(N;, N2) one has
1f = Follo < IF = Frullp + 1fs = frnllp < S+ 5 =2 ¥m =Ny,
i.e., f. — fin LP.

Step 2: There exists a subsequence ( f,,) which converges in L?.
Extract a subsequence (f,,) such that

£
2

1
”fn1+1 =. f"-z”P = y vl e N.

(To see that this exists proceed inductively: Choose nqy € N such that || f,, —
fullp < 2 ¥m,n > n,. Then choose ny > ny such that || fr, — fullp < 55 Ym,n >
na, etc.).

Claim: f,, converges to some f in LY. Indeed, writing f; instead of f,,,, we have

1
Ifier — fillp < 57 VIEN.

Set
gn(@) == _ |fisa(z) — fulz)|
=1

and note that the sequence (g, ), is increasing. Also note that

mn n oo
1 1
lgnlle < D _fisr = fille <Dz <D _mr =1
=1 =1 =1
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