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8. LP SPACES 77
So
sup “gn”P =1
e
and hence, by monotone convergence, g, (z) converges to a finite limit, say
g(z) = lim g,(x) =supg,(xz) for a.a. z.
n— oo 5
If m.n > 2, then

| fm(x) — fu(Z)] £ [fm(x) — fr—1(x)| + - - + | fr+1(x) — fu(z)]

< g(x) —gn-1(x) -0 a.e.

So for a.e. x, (fn(x)), is Cauchy and converges to some finite limit, denoted by
f(x), say. Letting m — oo, we also see, for a.e. x,

|f(z) = fa(2)| < 9(2) = gn1(z) < g(x) forn = 2.

In particular, f € L? and, since g? € L' and f(z) — fo(x) — 0 a.e. as n — oc,
we can also apply dominated convergence to see

||f — fn.“p — 0 as n — oc.

8.3 Reflexivity, Separability. The Dual of L?
We will consider the three cases

(A) 1<p< oo

(B) p=1

(C) p=oc

(A) Study of LP? for 1 < p < oo.

This is the most favorable case: L? is reflexive, separable, and the dual of
L? is L?".

Theorem 8.5. L? is reflexive for 1 < p < oc.

Proof. Step 1: (Clarkson’s first inequality) Let 2 < p < oo. Then

[

1
5 < SUIFIE +lgll)  ¥f.g € L. (1)

p
2

Proof of (1). Enough to show

|a+blp+|a—blp

1
Z(lal? P
> 5 2(|a| + |b|?) Va,be R.

Note that

a? + 7 < (a® + %)% va,8>0. (2)
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Indeed, if 3 > 0, then (2) is equivalent to

5 +1=((§)"+)° o

and the function (z2 + 1)% — 2”7 — 1 increases on [0,0c) and equals 0 at
x = 0, so

(:z:2+1)§ —a?P —1>0 Vx>0.
Hence (3) and thus (2) hold.

a—b

Now choose o« = =

2

a+b|, ,3 s

l in (2) to see

|a+b‘P+|a—b|PS(

a+b|2+ |a.—b|2)§
2 2

2 2
a’ + b2\ % 1
— &= r
( 2 ) = 5(a” + %),

3 2 . 3 . e
where in the last inequality we used the convexity of the function x +» ==

for p > 2.
L]

Step 2: LP is uniformly convex, and thus reflexive, for 2 < p < oc.
Indeed, let f,g € LP,||fllp, < 1,||lgllp, <1 and ||f — g|| = €. Then from (1)
we get

=L =3 122 =2 - (5
< jang+ o - [ 54 <1 (5)
| < 5UF1E+ lgl) || Bl

< (- (@) =1-0-0- ).

=6->0

f+g
2

= |

So LP,2 < p < oo, is uniformmly convex and hence reflexive by Theorem
7.44.

Step 3: L? is reflexive for 1 < p < 2.

Indeed, let 1 < p < oo and consider T : LP — (LF)*, % + # = 1, defined
as follows: given u € L?, the mapping

L? > fv—>/u.fdu

is a continuous linear functional on L? (by Hélder) and thus defines an
element Tu € (L? )* such that

(Tu)(f) = /-u.fd,u G =
Claim:

| Tull Loy~ = llullr Yu € LP.



8. LP SPACES 79
Proof. By Holder

Tu(f)] = | / afilp] = / | Fldge < ellpll fllr VF € L¥

SO

ITull oy = sup | [ ufdul < [lull,.
1fll,=1

On the other hand, given u € L7, we set

wlx p—2_$. if uls
Jo(x) = {)‘l ()P~ u(x), fu(x) #0

0, else

and note that, since p’ = ;—le

/ [Fa @) = %' / (P~ dp = AP / P = NP a2

SO
1

folly = AllullZ™* =1 if A= ———.
. [l

With this choice of f, we have
|Tull(rery- = Tu(fo)l = [lullp

so the claim follows and T : L? — (LP')* is an isometry!. Since L? is a
Banach space, we see that T(L?) is a closed subspace of (L?")*.

Now assume 1 < p < 2. Since 2 < p’ < oo, we know from Step 2, that
L?" is reflexive. Since a Banach space E is reflexive if and only if its dual
E* is reflexive, we see that (LP')* is also reflexive and since every closed
subspace of a reflexive space is also reflexive, we see that T'(L?) is reflexive
and thus L? too. O

()

Remark. LP is also uniformly convexr for 1 < p < 2 due to Clarkson’s
second inequality

||f+g

p’ f_g pl 1 4 p]—l
<5 Y P P

which is trickier to prove than his first inequality.

Theorem 8.6 (Riesz representation theorem). Let 1 < p < oo and ¢ €
(LP)*. Then there exists a unique uw € L? such that

o(f) = [ utdn.
Moreover,

lullpr = ll@llze)--
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Remark. Theorem 8.6 is extremely important! It says that every con-
tinuous linear functional on LP with 1 < p < oo can be represented in a
“concrete way” as an integral. The mapping ¢ — u is linear and surjective
and allows us to identify the abstract space (LP)* with LP' I It is the sole
reason why one always makes identification (L?P)* = L> for 1 < p < oo.

Proof. Consider T : L¥ — (LP)* defined by
Tu(f) = /’ltfd/J, e P, fer®
and note that by Step 3 in the proof of Theorem 8.5 one has
| Tull(Lry = llullp Yue LP.
So we only have to check that T is surjective. Indeed, let E = T(L”,) which
is a closed subspace of (L?)*. So it is enough to show that E is dense in
(LP)*. For this, let h € (LP)** satisfy
h(¢) =0 V¢ € E,
i.e., h(Tu) = 0 Vu € LP . Since LP is reflexive, h € L? and
h(Tu) = Tu(h) = /u.hdu.
So we have
/ uhdp =0 Yu € ¥,

Choosing

w=|h|P"2h € L¥

0= /uhdu =‘/|h,|”d,u,

so h = 0. Hence every continuous linear functional on F C (L”)* vanishes
on (LP)*, so F is dense in (LP)*. O

one sees

Theorem 8.7. The space C.(R?) is dense in L?(R?) for every 1 < p < oc.

Some notations:
e Truncation operator 7, : R — IR,

T, if || <n
n7 (7.) ST {'n,'r ’

o, if |7| > n.

e Characteristic function: for F < 2 let

1, ifz e F,
15(1,):{‘ _

0., else.
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Proof of Theorem 8.7. Step 1: LP N L is dense in LP. (L2° = bounded
functions with compact support).
Indeed, let f € LP. Put

gn ‘= lf?nTn(f) € L:o’

where B, = B,(0) = {z € R%| |z| < n}. Since |gn| < |f| € L? ¥Yn and
gn — [ a.e., Dominated convergence yields

”gn == f“p — 0 asn — oc.

Step 2: C.(R?) is dense in LP N L2 w.r.t. || - ||p.

Indeed, let f € LP N L2°. Since f is bounded and has compact support, we
have f € L! also. Let £ > 0. By density of C.(R%) in L', for any § > 0
there exists g € C.(R?) such that

If =gl <.

W.lo.g., we may assume that ||g|lec < ||f|loc, otherwise simply replace g
by Ty (g) with n = || f||.
Now note

1
»
1

1—3 o AN £
f=llee® <67(2[Iflloc)' 7.

If =gl <Ilf—g
Choosing & so small that 6% 2|l flloc)t ¥ < = we see

If = gll, <e.

Theorem 8.8. LP(RY) is separable for any 1 < p < oc.

Remark. As a consequence, LP(2) is separable for any measurable subset
Q < R?. Indeed, let I be the canonical isometry from LP(S)) into LP(R%)
by extending a function f : 2 — IF to R? by setting it zero outside 2. Then
LP(Q) may be identified with a subspace of LP(R?), hence LP()) is also
separable, whenever LP(R?) is! (see Theorem 7.36).

Proof of Theorem 8.8. Let R be the countable family of sets of the form

d
R = H(ak,bk), ar,br, € Q
k=1

and €& = vector space over Q (or @Q + iQ)) generated by the functions
(1g)rexw- So € is countable, since € comnsists of finite linear combinations
with rational coefficients of functions 1.

Claim: € is dense in LP(R%).

Indeed, given f € LP(R%),s > 03f; € C.(R?) such that ||f — fill, < 5.
Let R € R be any cube such that supp(f) C R.

Subclaim: Given any 6 > 0, there exists a function fo € & such that
|f1 — f2llp < & and supp(f2) C R.
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Indeed, simply split R into small cubes in R where the oscillation (sup — inf)
of f1 is less than 4. Then

B SR
Ifr — fallp < [Ifs — foll<|R|7 < 8|R|7,
R| = volume of R. By choosing § > 0 such that §|R|? < 5 we have

If = Ffellp < f = frllp + I 1 = fallp < €
and fo € E. O

where

Study of L!.
The dual space to L! is described in

Theorem 8.9 (Riesz representation theorem). Let ¢ € (L')*. Then there
exists a unique function uw € L such that

o) = /-ufd;u. Vf e L.
Moreover

lulloe = lI@ll(z1)--

Remark. Again, Theorem 8.9 allows us to identify every abstract contin-
uous linear functional ¢ € (L')* with a concrete integral. The mapping
¢ —» u, which is a linear surjective isometry allows to identify the ab-
stract space (LY)* with L>°. Therefore, one usually makes the identification
(DY) = IS,

Proof. Recall that we assume that €2 is o-finite, i.e., there exists a sequence
Q, C Q2 of measurable sets such that 2 = [J,, Q,, and p(€2,,) < oo Vn. Set
Xn — lﬂ,, .

Uniqueness of u: Suppose uq,us € L™ satisfy

o(f) = /Ulfdlt — /qudu Vf e Lk
Then v = uy — us satisfies
/ufduz() Vie.Lk (%)

Let

h:ﬁ—‘l if u #£ 0,
sign u = .
0, if u = 0,

and choose f = 1,,sign v in (*). Then

/ |luldpe =0 Vn

Qn
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so u = 0 on £2,,. hence u = 0.
Existence of u: Step 1: There is a function # € L? such that

O(x) >e, >0 Vzel, Vn.

Indeed, let @ = @1 on €24, @ = @z on 22 \ 24, ...,0 = @, on , \ 2,1,
etc. and adjust the constants «,, > 0 so that 8 € L2.
Step 2: Given # € (L')*, the mapping

L?> f— ¢(6f)

defines a continuous linear functional on L?! So by the Riesz representation
theorem for L2, there exists a function v € L? such that

d(Of) = /vfdu L = (%)
Set u(x) := ;E:; (well-defined since 8 > 0 on 2). Note that u is measurable
and, with x,, := 1, we have ux, € L? Vn.

Claim: u has all the required properties.
Choosing f = xn% € L? for g € L*° in (**) we have

@(Xng) = /angdlt Vg e L°°. (* * *)

Claim: u € L* and ||u|loc < ||®]l(L1)--

Proof. Fix C > ||¢||(z1)- and set
A= {x € Q| |u(z)| > C}.
We need to show that p(A) = 0.

Choosing g = xasign u in (* * *x), we see

/ |u|dp = /uxngdu = ¢(xXng)

AN,

< |®llc£1y- lIxnglh
= ”(.6”(L1)"ﬂ(A NQ2y,).

Note that |u| > C on A, so

/ |u|ldp = C / dpu=Cu(AnNN,)

AN, ANy,

and thus
Cu(AnQ,) < ||ollwry~pn(AnNy,),
so, since C' > ||¢||(L1)~, we must have

H(ANN,) =0 Vn






