

جامعة الانبار

كلية التربية للعلوم الصرفة

قسم الرياضيات / ماجستير

مقرر: التحليل الدالي

المحاضرة الاولى (10)

(المصدر)

Lectures Notes in Functinoal Analysis WS 2012 – 2013

and since $A = A \cap \left(\bigcup_n \Omega_n\right) = \bigcup_n A \cap \Omega_n$

$$\mu(A) = \mu(\bigcup_{n} A \cap \Omega_n) \le \sum_{n} \mu(A \cap \Omega_n) = 0.$$

So A is a null set and $||u||_{\infty} \leq ||\phi||_{(L^1)^*}$.

Claim:

$$\phi(h) = \int uhd\mu \quad \forall h \in L^1. \tag{****}$$

Indeed, choose $g = T_n h$ in (***) and note that $\chi_n T_n h \to h$ in L^1 . Claim:

$$\|\phi\|_{(L^1)^*} = \|u\|_{\infty}.$$

Indeed, by (****) one sees

$$|\phi(h)| \le ||u||_{\infty} ||h||_1 \quad \forall h \in L^1$$

so
$$\|\phi\|_{(L^1)^*} \leq \|u\|_{\infty}$$
.

Remark 8.10. The space L^1 is never reflexive, except in the trivial case where Ω consists of a finite number of atoms. Then L^1 is finite-dimensional! Indeed, assume that L^1 is reflexive and consider two cases

- (i) $\forall \varepsilon > 0 \ \exists A_{\varepsilon} \subset \Omega \ measurable \ with \ 0 < \mu(A_{\varepsilon}) < \varepsilon$.
- (ii) $\exists \varepsilon > 0$ such that $\mu(A) \geq \varepsilon$ for every measurable set $A \subset \Omega$ with $\mu(A) > 0$.

In case (i) there exists a decreasing sequence A_n of measurable sets such that

$$0 < \mu(A_n) \to 0$$
 as $n \to \infty$.

(Choose first any sequence B_n such that

$$0 < \mu(B_n) < 2^{-n}$$

and set $A_n := \bigcup_{k=n}^{\infty} B_k$.) Let $\chi_n := \mathbb{1}_{A_n}$ and set

$$u = \frac{\chi_n}{\|\chi_n\|_1}.$$

Since $||u||_1 = 1$ and since we assume that L^1 is reflexive, Theorem 7.28 applies and gives us a subsection (which we still denote by $(u_n)_n$) and $u \in L^1$ such that $u_n \to u$ weakly in L^1 , i.e.,

$$\int u_n \phi d\mu \to \int u \phi d\mu \quad \forall \phi \in L^{\infty}.$$

8. L^P SPACES 85

Moreover, for fixed j and n > j we have

$$\int_{A_j} u_n d\mu = \int u_n \chi_j d\mu = 1$$

so letting $n \to \infty$, we have

$$\int_{A_j} u d\mu = \int u \chi_j d\mu = \lim_{n \to \infty} \int u_n \chi_j d\mu = 1 \quad \forall j \in \mathbb{N}.$$

But, by dominated convergence, we have

$$\int u\chi_j d\mu \to 0 \quad as \ j \to \infty$$

which is a contradiction. So L^1 is not reflexive.

In case (ii) the space Ω is purely atomic and consists of a countable number of distinct atoms (a_n) , unless there are only finitely many atoms. In this case, L^1 is isomorphic to $l^1(\mathbb{N})$ and we need only to show that l^1 is not reflexive. Consider the canonical basis

$$e_n = (0, \dots, 0, \underbrace{1}_{n-th \ slot}, 0, \dots).$$

Assuming that l^1 is reflexive, there exists a subsequence (e_{n_k}) and some $x \in l^1$ such that $e_{n_k} \to x$ in the weak topology $\sigma(l^1, l^{\infty})$, i.e.

$$\underbrace{(\varphi, e_{n_k})}_{=\sum \varphi(j)e_{n_k}(j)} \to (\varphi, x) \quad \forall \varphi \in l^{\infty}.$$

Choosing $\varphi = \varphi_j = (0, 0, \dots, 0, \underbrace{1}_{j-th \ slot}, 1, \dots)$ we get

$$(\varphi_j, x) = \lim_{k \to \infty} \underbrace{(\varphi_j, e_{n_k})}_{=1 \ \forall k \ge j} = 1$$

but

$$(\varphi_j, x) = \sum_{n \ge j} x(j) \to 0 \quad as \ j \to \infty,$$

since $x \in l^1$, a contradiction.

(C) Study of L^{∞} .

This is more complicated and we will not give a full answer. We already know $L^{\infty} = (L^1)^*$ by Theorem 8.9. Being a dual space, L^{∞} has some nice properties, in particular

• The closed unit ball $B_{L^{\infty}}$ is compact in the weak* topology $\sigma(L^{\infty}, L^1)$ by Theorem 7.2.

• If $\Omega \subset \mathbb{R}^d$ is measurable and $(f_n)_n$ is a bounded sequence in $L^{\infty}(\Omega)$, there exists a subsequence $(f_{n_k})_k$ and some $f \in L^{\infty}$ such that $f_{n_k} \to f$ in the weak* topology $\sigma(L^{\infty}, L^1)$. This is a consequence of Corollary 7.42 which applies, since L^{∞} is the dual space of the separable space L^1 .

However, L^{∞} is not reflexive, except in the case where Ω consists of a finite number of points, since otherwise $L^1(\Omega)$ were reflexive (since a Banach space E is reflexive if and only if E^* is reflexive), and we know by the previous discussion that L^1 is not reflexive (Remark 8.10)! Thus, the dual space $(L^{\infty})^*$ contains L^1 , since $L^{\infty} = (L^1)^*$, and $(L^{\infty})^*$ is strictly bigger than L^1 . Thus there are continuous linear functionals ϕ on L^{∞} which cannot be represented as

$$\phi(f) = \int u f d\mu \quad \forall f \in L^{\infty} \text{ and some } u \in L^{1}.$$

Example. Let $\phi_0: C_c(\mathbb{R}^d) \to \mathbb{R}$ (or \mathbb{C}) be defined by

$$\phi_0(f) := f(0) \quad \forall f \in C_c(\mathbb{R}^d).$$

This is a continuous linear functional on $C_c(\mathbb{R}^d) \subset L^{\infty}(\mathbb{R}^d)$ and by Hahn-Banach, we may extend ϕ_0 to a continuous linear functional ϕ on $L^{\infty}(\mathbb{R}^d)$ and

$$\phi(f) = f(0) \quad \forall f \in C_c(\mathbb{R}^d).$$

BUT there is no $u \in L^1$ such that

$$\phi(f) = \int u f d\mu \quad \forall f \in L^{\infty}. \tag{*}$$

Assuming that such a function $u \in L^1$ exists, we get from (*) that

$$\int ufdx = 0 \quad \forall f \in C_c(\mathbb{R}^d), f(0) = 0.$$

By some result from measure theorey, this implies that u = 0 a.e. on $\mathbb{R}^d \setminus \{0\}$, hence u = 0 a.e. on \mathbb{R}^d , but then

$$\phi(f) = \int u f d\mu = 0 \quad \forall f \in L^{\infty},$$

a contradicion.

Remark. In fact, the dual space of L^{∞} is the space of (complex valued) Radon measures.

Theorem 8.11. $L^{\infty}(\mathbb{R}^d)$ is not separable. (In fact, $L^{\infty}(\Omega)$ is not separable, except if Ω consists of a finite number of atoms).

Lemma 8.12. Let E be a Banach space. Assume that there exists a family $(\mathcal{O}_i)_{i\in I} \subset E$ such that

(a) $\forall i \in I, O_i \neq \emptyset \text{ is open}$

- (b) $\mathfrak{O}_i \cap \mathfrak{O}_i = \emptyset$ if $i \neq j$
- (c) I is uncountable

Then E is not separable!

Proof. Suppose that E is separable and let $(u_n)_{n\in\mathbb{N}}$ be a dense countable set in E. For each $i \in I$ the set $\mathcal{O}_i \cap (u_n)_{n\in\mathbb{N}} \neq \emptyset$ so we can choose n(i) such that $u_{n(i)} \in \mathcal{O}_i$.

Note that the map $I \ni i \mapsto n(i) \in \mathbb{N}$ is injective, since, if n(i) = n(j), then

$$u_{n(i)} = u_{n(j)} \in \mathcal{O}_i \cap \mathcal{O}_j$$

so by (b) we must have i = j!

Therefore, I is countable, a contradicion!

Proof of Theorem 8.11. Let $I = \mathbb{R}^d$ and $\omega_i := B_1(i)$ (ball of radius one in \mathbb{R}^d centered at $i \in \mathbb{R}^d$).

Note:

$$\omega_i \triangle \omega_j = (\omega_i \setminus \omega_j) \vee (\omega_j \setminus \omega_i) \neq 0 \quad \text{if } i \neq j.$$

Let

$$\mathcal{O}_i := \{ f \in L^{\infty}(\mathbb{R}^d) | \|f - \mathbf{1}_{\omega_i}\|_{\infty} < \frac{1}{2} \}$$

and check that $(\mathcal{O}_i)_{i\in I}$ obeys the assumptions of Lemma 8.12 (for this note that $\|\mathbf{1}_{\omega_i}-\mathbf{1}_{\omega_i}\|_{\infty}=1$ if $i\neq j!$) so by Lemma 8.12, L^{∞} is not separable! \square

	Reflexive	Separable	Dual space
$L^p, 1$	YES	YES	$L^{p'}$
L^1	NO	YES	L^{∞}
L^{∞}	NO	NO	strictly bigger than L^1 !

9 Hilbert spaces

9.1 Some elementary properties

Definition 9.1. (a) Let H be a real vector space. A (real) scalar product $\langle u, v \rangle$ on H is a bilinear form $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ that is linear in both variables such that $\forall u, v \in H$

$$< u, v > = < v, u >$$
 (symmetry)
 $< u, u > \ge 0$ (positivity)
 $< u, u > = 0 \Rightarrow u = 0$

(b) If H is a complex vector space, a (complex) scalar product on H is a map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ such that $\forall u, w, x \in H, \alpha, \beta \in \mathbb{C}$:

٥

 $So < \cdot, \cdot > is linear in the second argument and$

$$< \alpha u + \beta w, x > = \overline{\langle x, \alpha u + \beta w \rangle}$$

= $\bar{\alpha} < x, u > + \bar{\beta} < x, w >$
= $\bar{\alpha} < u, x > + \bar{\beta} < w, x >$

so it is "anti"-linear in the first component.

One always has the Cauchy-Schwarz inequality

$$|< u, v>| \le < u, u>^{\frac{1}{2}} < v, v>^{\frac{1}{2}}$$
.

Proof. W.l.o.g., $u, v \neq 0$.

$$\begin{split} 0 &\leq < tu - sv, tu - sv > = \bar{t} < u, tu - sv > -\bar{s} < v, tu - sv > \\ &= |t|^2 < u, u > -\bar{t}s < u, v > -\bar{s}t \underbrace{< v, u >}_{= \overline{< u, v >}} + |s|^2 < v, v > \\ &= |t|^2 < u, u > + |s|^2 < v, v > -2Re(\bar{t}s < u, v >) \\ &= |t|^2 < u, u > + |s|^2 < v, v > -2Re(\bar{t}se^{i\theta}| < u, v > |) \end{split}$$

where θ is such that $\langle u, v \rangle = |\langle u, v \rangle| e^{i\theta}$. Choose $s = re^{-i\theta}, r, t > 0$ to get

$$0 \le t^2 < u, u > +r^2 < v, v > -2 \underbrace{Re(tr| < u, v > |)}_{=tr|< u, v > |}$$

$$\Rightarrow |< u,v>| \leq \frac{1}{2} \Big(\frac{t}{r} < u,u> + \frac{r}{t} < v,v> - < tu - re^{-i\theta}v, tu - re^{-i\theta}v> \Big).$$

Now choose t, r such that $\lambda = \frac{t}{r} = \frac{\langle v, v \rangle^{\frac{1}{2}}}{\langle u, u \rangle^{\frac{1}{2}}}$

$$\Rightarrow |< u, v>| \leq < u, u>^{\frac{1}{2}} < v, v>^{\frac{1}{2}} - \frac{1}{2} \underbrace{< \dots, \cdots>}_{\geq 0}$$

so we have the inequality, and if

$$|< u, v>| = < u, u>^{\frac{1}{2}} < v, v>^{\frac{1}{2}}$$

then we must have

$$\langle tu - re^{-i\theta}v, tu - re^{-i\theta}v \rangle = 0$$

for some choice of t, r > 0. So $tu - re^{-i\theta}v = 0$, hence u and v are linearly dependent!

Because of the Cauchy-Schwarz,

$$|u| := \sqrt{\langle u, u \rangle}$$
 (the norm induced by $\langle \cdot, \cdot \rangle$)

is a norm (we write |u| instead of ||u|| if the norm comes from a scalar product). Indeed,

$$\begin{aligned} |u+v|^2 &= < u+v, u+v> = < u, u> + 2Re < u, v> + < v, v> \\ &\leq |u|^2 + 2| < u, v> |+|v|^2 \\ &\leq |u|^2 + 2|u||v| + |v|^2 \\ &= (|u| + |v|)^2 \end{aligned}$$

so

$$|u+v| \le |u| + |v|.$$

Recall the parallelogram law

$$\left| \frac{a+b}{2} \right|^2 + \left| \frac{a-b}{2} \right|^2 = \frac{1}{4} (\langle a+b, a+b \rangle + \langle a-b, a-b \rangle)$$

$$= \frac{1}{4} (|a|^2 + \langle a, b \rangle + \langle b, a \rangle + |b|^2)$$

$$+ |a|^2 - \langle a, b \rangle - \langle b, a \rangle + |b|^2)$$

$$= \frac{1}{2} (|a|^2 + |b|^2).$$

Definition 9.2. A Hilbert space is a (real or complex) vector space equipped with a scalar product $\langle \cdot, \cdot \rangle$ such that H is complete w.r.t. the norm induced by $\langle \cdot, \cdot \rangle$.

Example. • $L^2(\Omega)$ with

$$< u, v> := \int\limits_{\Omega} \bar{u}v d\mu$$

is a Hilbert space.

l²(N) with

$$\langle x, y \rangle := \sum_{n \in \mathbb{N}} \bar{x_n} y_n$$

is a Hilbert space.

Proposition 9.3. Any Hilbert space H is uniformly convex and thus reflexive.

Proof. Let $\varepsilon > 0, u, v \in H, |u| \le 1, |v| \le 1$ and $|u - v| > \varepsilon$. Then, by the parallelogram law

$$\left|\frac{u+v}{2}\right|^2 \le 1 - \left|\frac{u-v}{2}\right|^2 < 1 - \frac{\varepsilon^2}{4}$$

so

$$\left|\frac{u+v}{2}\right| \le 1-\delta$$

with
$$\delta = 1 - (1 - \frac{\varepsilon^2}{4})^{\frac{1}{2}} > 0$$
.

Theorem 9.4 (Projection theorem). Let H be a Hilbert space and $K \subset H, K \neq \emptyset$, a closed convex set. Then for every $f \in H$ there exists a unique $u \in K$ such that

$$|f - u| = \inf_{v \in K} |f - v| =: dist(f, K). \tag{1}$$

Moreover, u is characterized by the property

$$u \in K$$
 and $Re < f - u, v - u \ge 0 \ \forall v \in K$. (2)

Notation: The above element u is called **projection** of f onto K and is denoted by

$$u =: P_K f$$
.

Proof. Existence: 1st proof: The function

$$K \ni v \mapsto \varphi(v) := |f - v|$$

is convex, continuous and

$$\lim_{v \in K, |v| \to \infty} \varphi(v) = \infty.$$

So by Corollary 7.33 we know that φ attains its minimum on K since H is reflexive.

2nd proof: Now a direct argument: Let $(v_n)_n \subset K$ be a minimizing sequence for (1), i.e., $v_n \in K$ and

$$d_n := |f - v_n| \to d := \inf_{v \in K} |f - v|.$$

Claim 1: $v := \lim_{n \to \infty} v_n$ exists and $v \in K$.

Indeed, apply the parallelogram identity to $a = f - v_n$ and $b = f - v_m$ to see

$$\left| f - \frac{v_n + v_m}{2} \right|^2 + \left| \frac{v_n - v_m}{2} \right|^2 = \frac{1}{2} (|f - v_n|^2 + |f - v_m|^2) = \frac{1}{2} (d_n^2 + d_m^2).$$

Since K is convex, $\frac{v_n+v_m}{2} \in K$, so

$$\left| f - \frac{v_n + v_m}{2} \right|^2 \ge d^2$$

and hence

$$\left| \frac{v_n - v_m}{2} \right|^2 \le \frac{1}{2} (d_n^2 + d_m^2) - d^2 \to 0 \text{ as } n, m \to \infty$$

so

$$\lim_{n.m\to\infty} |v_n - v_m| = 0,$$

and $(v_n)_n$ is Cauchy! Thus $v = \lim_{n \to \infty} v_n$ exists and since K is closed, $v \in K$. Equivalence of (1) and (2): Assume $u \in K$ satisfies (1) and let $w \in K$. Then

$$v := (1 - t)u + tw \in K \quad \forall t \in [0, 1]$$

so

$$|f - u| \le |f - v| = |(f - u) - t(w - u)|$$

 $\Rightarrow |f - u|^2 \le |f - u|^2 - 2tRe < f - u, w - u > +t^2|w - u|^2$

so

$$2Re < f - u, w - u > \le t|w - u|^2 \quad \forall t \in (0, 1]$$

$$\to 0 \quad \text{as } t \to 0$$

so (2) holds.

On the other hand, if (2) holds, then for $v \in K$,

$$\begin{split} |u-f|^2 - |v-f|^2 &= < u - f, u - f > - < v - f, v - f > \\ &= |u|^2 - 2Re < f, u > + |f|^2 - |v|^2 + 2Re < f, v > - |f|^2 \\ &= |u|^2 - |v|^2 + 2Re < f, v - u > \\ &= |u|^2 - |v|^2 + 2Re < f - u, v - u > + 2Re < u, v - u > \\ &= -|u|^2 - |v|^2 + 2Re < u, v > + 2Re < f - u, v - u > \\ &= -|u|^2 - |v|^2 + 2Re < u, v > + 2Re < f - u, v - u > \\ &= -|u - v|^2 + 2Re < f - u, v - u > \le 0, \end{split}$$

so (1) holds.

Uniqueness: Assume that $u_1, u_2 \in K$ satisfy (1). Then

$$Re < f - u_1, v - u_1 \ge 0 \quad \forall v \in K$$
 (3)

$$Re < f - u_2, v - u_2 > \le 0 \quad \forall v \in K$$
 (4)

Choose $v = u_2$ in (3) and $v = u_1$ in (4). Then

$$Re < f - u_1, u_2 - u_1 > \le 0,$$

 $Re < f - u_2, u_2 - u_1 > \ge 0.$

$$\Rightarrow 0 \ge Re < f - u_1, u_2 - u_1 > -Re < f - u_2, u_2 - u_1 >$$

$$= Re < -u_1, u_2 - u_1 > +Re < u_2, u_2 - u_1 >$$

$$= Re < u_2 - u_1, u_2 - u_1 >$$

$$= |u_2 - u_1|^2 \ge 0$$

so
$$|u_2 - u_1| = 0$$
, i.e., $u_2 = u_1$.

Remark. (1) It is not at all surprising to have a minimization problem related to a system of inequalities. Let $F:[0,1] \to \mathbb{R}$ be differentiable (with left and right derivatives at 1 and 0, resp.) and let $u \in [0,1]$ be a point at which F achieves its minimum. Then we have three cases:

either
$$u \in (0,1)$$
 and $F'(u) = 0$
or $u = 0$ and $F'(0) \ge 0$
or $u = 1$ and $F'(1) < 1$

٠	
١	