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CHAPTER I. NVS, BS AND MS
and since A = AN (Un Sln) =U,ANN,

n(A) = p( JAN Q) <D n(ANQ,) =o0.

So A is a null set and |[ul|oc < ||&|[(L1)-- O
Claim:
od(h) = /uhdu Vh € L. ( * *xx)

Indeed, choose g = T,,h in (* * ) and note that x,7,h — h in L.
Claim:

lollzry = llu|lss-
Indeed, by (* * *%) one sees
|¢(R)| < |lullscllhlls VR e L
50 16ty < llellos- -
Remark 8.10. The space L' is never reflexive, except in the trivial case
where Q) consists of a finite number of atoms. Then L' is finite-dimensional!

Indeed, assume that L' is reflevive and consider two cases

(i) Ve > 0 JA. C Q measurable with 0 < pu(A:) < €.

(ii) e > 0 such that p(A) > = for every measurable set A C ) with
n(A) > 0.

In case (i) there exists a decreasing sequence A,, of measurable sets such
that

0< pu(Ar) >0 asn — ooc.
(Choose first any sequence B,, such that
0:< ul(B) <2™

arid set: A, =) Bis )
Let xn, := 14, and set

Xn
U = 3
x4
Since ||u||l1 = 1 and since we assume that L' is reflexive, Theorem 7.28

applies and gives us a subsection (which we still denote by (un),) and
w € L' such that u,, — u weakly in L', i.e.,

/ungbdu - /uq&d,u V¢ € L.
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Moreover, for fired j and n > j we have

/und,u = _/’U-and-lt = 1

Aj

so letting n — oo, we have

/uduz /uxjdu = lim /u.nxjd,u =1 VjeN.
n—roQ

Ay

But, by dominated convergence, we have

/uxjdu. —0 asj— o

which is a contradiction. So L' is not reflerive.

In case (i1) the space 2 is purely atomic and consists of a countable number
of distinct atoms (a,), unless there are only finitely many atoms. In this
case, L' is isomorphic to I'(N) and we need only to show that l' is not
reflexive. Consider the canonical basis

en=10(0,...,0, 1 _,0,...).

n—th slot

Assuming that ' is reflexive, there exists a subsequence (e,,) and some
x € I' such that e,, — x in the weak topology o(1',1°°), i.e.

(p,en,) — (p,x) Vo el™.
N——
=5 (i)en, ()

Choosing ¢ = p; = (0,0,...,0, 1 clpsee) e geh
j—th slot
(pj>x) = klill‘l (pj €n) =1
S —> OO0 N e’

=1 Vk>j
but

(pjr@) =) _x(§) >0 asj—> oo,

n=j

since x € 1, a contradiction.

Study of L>°.

This is more complicated and we will not give a full answer. We already
know L> = (L')* by Theorem 8.9. Being a dual space, L°° has some nice
properties, in particular

e The closed unit ball By~ is compact in the weak* topology o(L>, L)
by Theorem 7.2.
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e If O C R is measurable and (f,.), is a bounded sequence in L>(£2),
there exists a subsequence ( f,,, )r and some f € L such that f,,, — f
in the weak* topology o(L>, L'). This is a consequence of Corollary
7.42 which applies, since L>° is the dual space of the separable space
Lt

However, L°° is not reflexive, except in the case where {2 consists of a finite
number of points, since otherwise L!'(€2) were reflexive (since a Banach
space FE is reflexive if and only if E* is reflexive), and we know by the
previous discussion that L' is not reflexive (Remark 8.10)! Thus, the dual
space (L>°)* contains L', since L> = (L')*, and (L°°)* is striclty bigger
than L!'. Thus there are continuous linear functionals ¢ on L> which
cannot be represented as

d(f) = /ufd,u. Vf € L™ and some u € L'.

Example. Let ¢ : C.(RY) — R (or C) be defined by
Po(f) = f(0) Vf e C(R?).

This is a continuous linear functional on C.(R?) ¢ L>°(R?) and by Hahn-
Banach, we may extend ¢o to a continuous linear functional ¢ on L (R%)
and

d(f) = f(0) V[ e C.(RY).

BUT there is no u € L' such that
o) = [ufdu vferL>. (*)
Assuming that such a function u € L' exists, we get from () that

/ufda: =0 VfeC.(R?,f(0)=0.

By some result from measure theorey, this implies that v = 0 a.e. on
R9\ {0}, hence u =0 a.e. on R?, but then

BUE) — / ufdu=0 VfeL>,

a contradicion.

Remark. In fact, the dual space of L™ is the space of (complex valued)
Radon measures.

Theorem 8.11. L>(R%) is not separable. (In fact, L>(S2) is not separa-
ble, except if ) consists of a finite number of atoms).

Lemma 8.12. Let F be a Banach space. Assume that there exists a family
(0:)icr € E such that

(a) Vi e I,0; # 0 is open
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(b)) O:NO; =0 ifi# 3
(c¢) I is uncountable

Then E is not separable!

Proof. Suppose that E is separable and let (u,),en be a dense countable
set in E. For each i € I the set O; N (un)nen # O so we can choose n(i)
such that u,) € O;.

Note that the map I 2 i — n(i) € N is injective, since, if n(i) = n(j), then

Un(i) = Un(;) € 0:NO;

so by (b) we must have 7 = j!
Therefore, I is countable, a contradicion! O

Proof of Theorem 8.11. Let I = R? and w; := B;(i) (ball of radius one in
R? centered at i € R?).
Note:

wilwj = (Wi \wj) V (wj \ws) # 0 if i # .
Let
; ; 1
0; i={f € L=RY| |If — L. lloe < 5}

and check that (O;);er obeys the assumptions of Lemma 8.12 (for this note
that |1, — 1, ||« = 1ifi # j!) so by Lemma 8.12, L*° is not separable! [

Reflexive | Separable Dual space
LP, 1. & P <68 YES YES LP
L' NO YES L=
Lee NO NO strictly bigger than L'!

9 Hilbert spaces

9.1 Some clementary properties

Definition 9.1. (a) Let H be a real vector space. A (real) scalar product
< u,v > on H is a bilinear form < -,- >: H x H — R that is linear in both
variables such that Vu,v € H

<u,v>=<uv,u> (symmelry)
<u,u>2=>0 (positivity)
<u,u>=0=u=0

(b) If H is a complex vector space, a (complex) scalar product on H is a map
< -, ->: H x H— C such that Vu,w,x € H,o, 3 € C:

<r,au+PBw>=a<z,u>+3<zx,w>
<u,w>=<w,u>
<u;u>>0 and<uyu>=0=u=0
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So < -,- > is linear in the second argument and

<ou—+ Bw,x > =< x,au+ Sw >
= a< :zr,u>+;'3< X, S
—a<uzxz>+B8<wx>

so it is “anti”-linear in the first component.
One always has the Cauchy-Schwarz inequality
| s | < >3 < v, v >7
Proof. W.l.o.g., u,v # 0.

0 << tu—sv,tu—sv>=1t<utu—sv>—5<uvtu—sv>
=t <u,u>—ts<u,v>—-3st<v,u>+s?<v,v>
N, i
=<u,v>
= t|2 < u,u > +|s|®> < v,v > —2Re(ts < u,v >)
= [t|* < u,u > +|s|® < v,v > —2Re(tse’®| < u,v > |)

where @ is such that < uw,v >= | < u,v > |e*.
Choose s =re” " r,t > 0 to get

0<t2<u,u>+r2<v,v>—-2Re(tr| <u,v>|)

R <
=tr|<u,v>|

1/t r —if —i0
=>|<u,v>|§5(—<u,u>+;<'u.,'u>—<t'u—1'e o, tu — re 'U>).
; i

L
Now choose t,r such that A = % _ <v,u>2
<Lu,u>2
1 5. Bl
= | <u,v>|<<u,u>I<v,v>2 —§< caargten Be
| S S—
>0
so we have the inequality, and if
5 i
|<u,v>|=<u,u>T< v,v >2

then we must have

<tu—re v, tu —re v >=0
for some choice of ¢, > 0. So tu — re v = 0, hence u and v are linearly
dependant! (!
Because of the Cauchy-Schwarz,

|u| := /< u,u > (the norm induced by < -,- =)
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is a norm (we write |u| instead of ||u|| if the norm comes from a scalar product).
Indeed,

lu+v|? =< u+v,u+v>=<u,u>+2Re < u,v >+ < v,v >
< |ul2 +2| < u,v > |+ |v|?
< Jul? + 2fullo] + o]
= (Ju] + |v])?

SO
|u + v| < |u| + |v].

Recall the parallelogram law

|a+b|2+|a—b‘2= l(<0L+b,a.+b> + <a—ba—b>)
2 2 4
= %(|a]2+ < a,b>+ < b,a > +|b|?
+ |a|?— < a,b > — < b,a > +|b|?)
= S (lal? + b?).
Definition 9.2. A Hilbert space is a (real or complex) vector space equipped

with a scalar product < -,- > such that H is complete w.r.t. the norm induced
by << 10 >0

Example. o L2(Q) with
< u,v >i= /ﬁ.vdu.
«Q

is a Hilbert space.
e [2(N) with

< T,y == E Lnn
necl

is a Hilbert space.
Proposition 9.3. Any Hilbert space H is uniformly convex and thus reflexive.

Proof. Let ¢ > O,u,v € H,|u| < 1,|v|] < 1 and |u — v| > £. Then, by the
parallelogram law

u—+v|2 u—v|? g2
<1—| l Lol
| 2 I- 2 1
SO
u—+v <
I
Enk
with 6 =1— (1 — £)% > 0. 0
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Theorem 9.4 (Projection theorem). Let H be a Hilbert space and K C H, K #
0, a closed convex set. Then for every f € H there exists a unique u € K such
that

|f —u| = inf |f — v| =: dist(f, K). (1)
veEK
Moreover, u is characterized by the property
ueK and Re< f—u,v—u><0Wv € K. (2)

Notation: The above element u is called projection of f onto K and is
denoted by

u=: Pgf.
Proof. Existence: 1st proof: The function
K>v— p(v) :=|f —v|
is convex, continuous and

lim w(v) = oo.
veK,|lv|—oo
So by Corollary 7.33 we know that ¢ attains its minimum on K since H is
reflexive.
2nd proof: Now a direct argument: Let (v,), € K be a minimizing sequence
for (1), i.e., v, € K and

.= — v, = d:= inf — vl.
|f — vnl Jnf |f — vl
Claim 1: v := lim,, o v, exists and v € K.
Indeed, apply the parallelogram identity to a = f — v, and b = f — v,, to see

Vn + Vi
2

Upn — Um

2 2 N 1
otk |t L7t 1 - ol = B )

Since K is convex, *25%= € K| so

UntUm|? 2

|f_ 2 =

and hence

Up — Um |2 1
%| < 5(d;"l +d2)—d*—0 asn,m— oo
SO
lim |v, —v,| =0,
n.m—rod

and (v, ), is Cauchy! Thus v = lim,, , . v, exists and since K is closed, v € K.
Equivalence of (1) and (2): Assume u € K satisfies (1) and let w € K. Then

vi=(Q1—-tu+twe K Vte|0,1]
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SO

If —u] < |f —v| = |(f —u) — t(w —u)|

= |f—ul2<|f —u?—-2tRe < f —u,w —u > +t|w — ul?
SO
2Re < [ —u,w —u > < tlw — ’u.|2 vt € (0,1]
—0 ast—0
so (2) holds.
On the other hand, if (2) holds, then for v € K,
=P —=lv—flP=<u—-fiu—f>—-<v—fiv—f>
= |u|? — 2Re < f,u > +|f|*> — |[v|®> + 2Re < f,v > —|f|?
= |ul®> — |v|2+2Re < f,v —u>
= |u.|2 — |v|2 +2Re < f—u,v —u > +2Re < u,v —u >
= —|u|?2 — |v|? + 2Re < u,v > +2Re < f —u,v — u >
= —|u—v|2+gRe<f—u,v—u>J§O,

~~

<0 by (2)

so (1) holds.
Uniqueness: Assume that u;,us € K satisfy (1). Then

Re< f—uy,v—u ><0 VveK (3)

Re < f—us,v—us ><0 VevekK (4)
Choose v = us in (3) and v = u; in (4). Then

Re<f—u1,u2—'u.1 > < 0,
Re < f—ug,us —uy > > 0.

=0>Re< f—uj,us —uy > —Re < f— us,us —uy >
= Re < —uy,us —uy > +Re < ug,us — uqp >
= Re < us — uy,us — uyp >
= |lug —u1|2 >0
SO |uz — uy| = 0, i.e., us = u;. i

Remark. (1) It is not at all surprising to have a minimization problem related
to a system of inequalities. Let F : [0,1] — R be differentiable (with left and
right derivatives at 1 and 0, resp.) and let v € [0, 1] be a point at which F
achieves its minimum. Then we have three cases:

either u € (0,1) and F'(u) =0
oru=0 and F'(0) >0
oru=1 and F(1) <1






