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All three cases can be summarized as

ue[0,1] and F'(u)(v—u)=>0 Yove]l0l].

(2) Let E be a uniformly convexr Banach space, K C E,K # 0, closed and
convex. Then ¥f € E there exists a unique u € K such that

If = ull = inf |If — ol =: dist(f, K).

Proposition 9.5. Let K ¢ H, K # 0, closed and convex. Then Py does not
increase distance, 1i.e.,

|Pr fr — P fo| < |fi — f2| VYfi,fa € H.

Proof. Let u; := Pk f;. Then as in the uniqueness proof of Theorem 9.4, we
have by (2)

Re<f1—u1,’v—u1 ><0 VvelkK,
Re < fo—ug,v —upx ><0 VYvelkK.

Choose v = us in the first inequality and v = u; in the second to see

Re < fi —ui,us —uyp > < 0,
Re < fo —us,us —uy > > 0.

Therefore
0> Re < fi —ui,us —uy > +Re < fo—us,uy —us >
=Re< fi —uy — fo+ us,us —uy >
= Re < f1 — fa,us —uy3 > —|ug — u.1|2.
So
uz —u1|? < Re < f1 — fa,uz —uy >
<| < fi— fo,us —uy > |
< |fi — fallue — ual.
~—
CSI
Thus

up —ur| < | f1 — fal
[

Corollary 9.6. Assume that M C H is a linear subspace. Let f € H. Then
u = Ppr f is characterized by

vueM and < f—u,v>=0 VYve M, (6)

i.e., [ —u is perpendicular to all v € M. Moreover, Py is a linear operator
called the orthogonal projection.
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Proof. Step 1: By (2) we have
Re< f—u,v—u>=0 YveM.
Since M is a subspace, tv € M Vt € R,v € M. Hence

Re< f—u,tv—u> <0 VteR

-~

=tRe< f—u,v>—Re<f—uv>

and thus for ¢ > 0:

Re< f—u,v>< %Re <f—u,v>—=>0 ast— oc
SO

Re < f—u,v><0

and for t < O:

Re< f—u,v>> %Re<f—u,'u>—>0 as t — oc
SO

Re< f—u,v><0 and Re< f—u,v>=>0,
i.e.,
Re< f—u,u>=0 VvelM.
Replace v by —iv. Then
O=Re< f—u,—tv>=Re(—i< f—u,v>)=Im< f—u,v>

so (6) holds.
Step 2:

|Prmfl < |fl Vfe€H.
Indeed, since M is linear, 0 € M and Py;0 = 0, so by Proposition 9.5
|Prm f| = |Pmf — PuO| < |f —0| = |f]

Step 3: If w satisfies (6), then u = Py, f.
Indeed, if

< f—u,v>=0 VYvelM,
then, since v € M, and M is linear, v — u € M, so
< f—u,v—u>=0.

Hence (2) holds which characterizes u = Py f!
Step 4: Pas : H — M is linear.
Indeed, if f1, fo € H,u; = Pyp fj, 1,020 € F, then

< fi—u,v>=0 Yve M,
< fo—us,v>=0 Yve M.

r
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Thus

0=<ao1f1 —oqu1,v >+ < asfo — aous, v >
=< ay f1 + ag fo — (1uy + asug), v >,

ie.,

ojuy + agug = Py fi + aafa).

9.2 The dual space of a Hilbert space

There are plenty of continuous linear functionals on a Hilbert space H. Simply
pick f € H and consider

ur—< fiu > .

The remarkable fact is that all continuous linear functionals on H are of this
form!

Theorem 9.7 (Riesz-Fréchet representation theorem). Given any ¢ € H* there
exists a unique f = f, € H such that

p(u) =< f,u> VYue H.
Moreover,
Ifl = llella--
Proof. 1st: Consider the map 7°: H — H~*,
Tl =< f.. e HY,
i.e.,
Tflw) =< fomss .
It is clear that |7 f|| g+ = |f| (why?), so T is an isometry from H onto T(H),
i.e., T(H) is a closed subspace of H*. Assume h € (H*)* which vanishes on
T(H). Since H is reflexive, h € H and
Tf(h) =< LhA>»=0 VfeH.
Take f = h. Then
|2 =< h,h>=0 = h=0,

i.e., T(H) is dense in H* and thus T(H) = H.
2nd: Given ¢ € H*, let

M=o 1({0}) cH
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and note that M is closed since @ is continuous.
Assume M # H (otherwise ¢ = 0 and we take f = 0). Pick any g9 € H such
that ¢(go) # 0 and set g1 := Pargo € M. Note

w(go — g1) = ©(g0) — w(g1) = p(g0) # 0
——

=0
S0
go — g1 # 0.
Put
_ 90— %
lg0 — 1|
Then |g| = 1,
©(90)
plg) = 220 20
lgo — g1
and
< g,V >= —m— < go — g1,V >= —— < go — Pygo,v >=0
l90 — g1l lg0 — g1]
by Corollary 9.6.
Given u € H let
U=u—Ag
and choose A such that v € M, i.e.,
)
v(g)
But then
O0=<g,v>=<g,u— Ag >
=< g,v>—-A<g,9>
————r
==
=< g,v > _(,9(“).
©(9)
Thus
p(u) = ¢(9) < g,u >=< p(g)g,u >
so f := ¢(g) works. O
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9.3 The Theorems of Stampacchia and Lax-Milgram
In the following, let /1 be a real Hilbert space.
Definition. A bilinear form a : H x H — R is said to be

(i) continuous, if there exists C' > 0 such that

la(u, v)| < Clu||lv] Yu,v € H;

(ii) coercive, if there exists o« > 0 such that

a(v,v) > alv|* Yv e H.

Theorem 9.8 (Stampacchia). Assume that a is a continuous coercive bilinear
form on a real Hilbert space H. Let K € H, K # 0 closed and convexr. Then
given @ € H* there exists a unique u € K such that

alu,v —u) > (v —u) YVve K. (1)

Moreover, if a is symmetric, then w is characterized by
wek wnd Sabuad—l )—‘*f(l (v,v) — («-)) (2)
za(u, u p(u) = inf | sa(v,v w(v) ).

We need

Theorem 9.9 (Banach fixed point theorem). Let X # () be a complete metric
space and S : X — X be a strict contraction, i.e.,

d(S(x1),S(z2)) < kd(z1,x2) Vx1,22 € X with k < 1.
Then S has a unique fized point u, i.e., u = S(u).

Proof of Theorem 9.8. By Riesz representation theorem there exists f € H such
that

pv)=< f,v> WVYveH.

Note that also the maps v — a(u,v) € H*, so again there exists a unique
element in /7, denoted by Awu such that

a(u,v) =< Au,v > Vv € H.
Note: A is a linear operator from H to H and

|Au| < Clu| Yu € H,
< Au,u > > a|ul® Yu € H.

So problem (1) says we should find u € K such that
< Au,v—u>>< f,v—u> WYveK. (3)
Let p > 0 and note that (3) is equivalent to

<pf—pAut+u—u,v—u><0 VveK, (4)
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i.e.,
u = Pg(pf — pAu+ u).
For v € K set
S() = Px(pf — pAv + v).

Claim: Choosing p > 0 cleverly, S is a strict contraction, so it has a unique fixed
point!
Indeed,

|Svy — Svz| = |Pr(pf — pAvy +v1) — Pr(pf — pAvs + va2)|
< |pf — pAvy + vy — pf + pAva — v
= |(v1 — v2) + p(Avy — Avs)|

= |Sv; — Sv2|2 = |vy —v2|? — 2p < Avy — Avg,v1 — Vg > +p2|Avy — Avg)?

s i
Zalvy—v2|?

< |lv1 — v2|?(1 — 2pa + p2C?).
Choose p so that
K2=1-=2pa+ p?C%< 1,
ie, 0< p< —(2—5—5— Then S has a unique fixed point.
Assume now that a is symmetric. Then a(u, v) defines a new scalar product
on H with norm y/a(u,u) which is equivalent to the old norm |u|. Thus H is a

Hilber space for this new scalar product. By Riesz-Fréchet for a(u, v), it follows
that given ¢ € H* there exists a unique g € H such that

w(u) = a(g,u) Yu € H.
Note that problem (1) amounts to finding some v € K such that
a(lg—u,v—u) <0 YveK (5)

but the solution to (5) is the projection onto K of g for the new scalar product
a! By Theorem 9.4 u € K is the unique element which achieves

inf \/a(g —v,g —v),

i.e., one minimizes on K the function

v—alg —v,g —v) = a(v,v) — 2a(g,v) + a(g, g)
= a(v,v) — 2¢(u) + a(g, g)

or equivalently, the function

1
v Ea('u, v) — o(u).
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Corollary 9.10 (Lax-Milgram). Assume that a(u,v) is a continuous coercive
bilinear form on H. Then given any ¢ € H* there exists a unique u € H such
that

a(u,v) = p(u) Yv € H. (6)

Moreover, if a is symmetric, then u is characterized by

ue H and %a(u, u) —¢(u) = inf (a(v,v) — @(v)). (7)
tveH

Proof. Apply Theorem 9.8 with K = H and use linearity of H as in the proof
of Corollary 9.6. ]






