
1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 17

1.3 Round-off Error and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arith-
metic that we use in our algebra and calculus courses. From your past experience
you might expect that we always have as true statements such things as 2 + 2 = 4,
4 · 8 = 32, and (

√
3)2 = 3. In standard computational arithmetic we expect exact

results for 2 + 2 = 4 and 4 · 8 = 32, but we will not have precisely (
√

3)2 = 3. To
understand why this is true we must explore the world of finite-digit arithmetic.

In our traditional mathematical world we permit numbers with an infinite num-
ber of digits. The arithmetic we use in this world defines

√
3 as that unique positive

number that when multiplied by itself produces the integer 3. In the computational
world, however, each representable number has only a fixed and finite number of
digits. This means, for example, that only rational numbers—and not even all of
these—can be represented exactly. Since

√
3 is not rational, it is given an approx-

imate representation within the machine, a representation whose square will not
be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in
most situations. In most cases, then, this machine representation and arithmetic
is satisfactory and passes without notice or concern, but at times problems arise
because of this discrepancy.

The error that is produced when a calculator or computer is used to perform
real-number calculations is called round-off error. It occurs because the arithmetic
performed in a machine involves numbers with only a finite number of digits, with
the result that calculations are performed with only approximate representations
of the actual numbers. In a typical computer, only a relatively small subset of the
real number system is used for the representation of all the real numbers. This
subset contains only rational numbers, both positive and negative, and stores the
fractional part, together with an exponential part.

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published
a report called Binary Floating Point Arithmetic Standard 754–1985. Formats were
specified for single, double, and extended precisions. These standards are generally
followed by all microcomputer manufacturers using hardware that performs real-
number, or floating point , arithmetic operations. For example, the double precision
real numbers require a 64-bit (binary digit) representation.

The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent,
c, and a 52-bit binary fraction, f , called the mantissa. The base for the exponent
is 2.

The normalized form for the nonzero double precision numbers have 0 < c <
211 − 1 = 2047. Since c is positive, a bias of 1023 is subtracted from c to give an
actual exponent in the interval (−1023, 1024). This permits adequate representation
of numbers with both large and small magnitude.The first bit of the fractional part
of a number is assumed to be 1 and is not stored in order to give one additional bit
of precision to the representation, Since 53 binary digits correspond to between 15
and 16 decimal digits, we can assume that a number represented using this system
has at least 15 decimal digits of precision. Thus, numbers represented in normalized

18CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

double precision have the form

(−1)s ∗ 2c−1023 ∗ (1 + f).

Consider for example, the machine number

0 10000000011 10111001000100.

The leftmost bit is zero, which indicates that the number is positive. The next 11
bits, 10000000011, giving the exponent, are equivalent to the decimal number

c = 1 · 210 + 0 · 29 + · · ·+ 0 · 22 + 1 · 21 + 1 · 20 = 1024 + 2 + 1 = 1027.

The exponential part of the number is, therefore, 21027−1023 = 24. The final 52 bits
specify that the mantissa is

f = 1 ·
(

1
2

)1

+ 1 ·
(

1
2

)3

+ 1 ·
(

1
2

)4

+ 1 ·
(

1
2

)5

+ 1 ·
(

1
2

)8

+ 1 ·
(

1
2

)12

.

As a consequence, this machine number precisely represents the decimal number

(−1)s ∗ 2c−1023 ∗ (1 + f)

= (−1)0 · 21027−1023

(
1 +

(
1
2

+
1
8

+
1
16

+
1
32

+
1

256
+

1
4096

))
= 27.56640625.

However, the next smallest machine number is

0 10000000011 10111001000011

and the next largest machine number is

0 10000000011 1011100100010000000000000000000000000000000000000001.

This means that our original machine number represents not only 27.56640625, but
also half of all the real numbers that are between 27.56640625 and its two nearest
machine-number neighbors. To be precise, it represents any real number in the
interval

[27.56640624999999988897769753748434595763683319091796875,
27.56640625000000011102230246251565404236316680908203125).

The smallest normalized positive number that can be represented has s = 0, c = 1,
and f = 0, and is equivalent to the decimal number

2−1022 · (1 + 0) ≈ 0.225× 10−307,

The largest normalized positive number that can be represented has s = 0, c = 2046,
and f = 1− 2−52, and is equivalent to the decimal number

21023 ·
(
1 +

(
1− 2−52

))
≈ 0.17977× 10309.

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 19

Numbers occurring in calculations that have too small a magnitude to be repre-
sented result in underflow, and are generally set to 0 with computations contin-
uing. However, numbers occurring in calculations that have too large a magnitude
to be represented result in overflow and typically cause the computations to stop
(unless the program has been designed to detect this occurrence). Note that there
are two representations for the number zero; a positive 0 when s = 0, c = 0 and
f = 0 and a negative 0 when s = 1, c = 0 and f = 0. The use of binary digits
tends to complicate the computational problems that occur when a finite collection
of machine numbers is used to represent all the real numbers. To examine these
problems, we now assume, for simplicity, that machine numbers are represented in
the normalized decimal form

±0.d1d2 . . . dk × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9

for each i = 2, . . . , k. Numbers of this form are called k-digit decimal machine
numbers.

Any positive real number within numerical range of the machine can be nor-
malized to achieve the form

y = 0.d1d2 . . . dkdk+1dk+2 . . .× 10n.

The floating-point form of y, denoted by fl(y), is obtained by terminating the
mantissa of y at k decimal digits. There are two ways of performing the termination.
One method, called chopping, is to simply chop off the digits dk+1dk+2 . . . to obtain

fl(y) = 0.d1d2 . . . dk × 10n.

The other method of terminating the mantissa of y at k decimal points is called
rounding. If the k + 1st digit is smaller than 5, then the result is the same as
chopping. If the k + 1st digit is 5 or greater, then 1 is added to the kth digit and
the resulting number is chopped. As a consequence, rounding can be accomplished
by simply adding 5× 10n−(k+1) to y and then chopping the result to obtain fl(y).
Note that when rounding up the exponent n could increase by 1. In summary, when
rounding we add one to dk to obtain fl(y) whenever dk+1 ≥ 5, that is, we round
up; when dk+1 < 5, we chop off all but the first k digits, so we round down.

The next examples illustrate floating-point arithmetic when the number of digits
being retained is quite small. Although the floating-point arithmetic that is per-
formed on a calculator or computer will retain many more digits, the problems this
arithmetic can cause are essentially the same regardless of the number of digits.
Retaining more digits simply postpones the awareness of the situation.

EXAMPLE 1 The irrational number π has an infinite decimal expansion of the form π = 3.14159265
Written in normalized decimal form, we have

π = 0.314159265 . . .× 101.

The five-digit floating-point form of π using chopping is

fl(π) = 0.31415× 101 = 3.1415.

20CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Since the sixth digit of the decimal expansion of π is a 9, the five-digit floating-point
form of π using rounding is

fl(π) = (0.31415 + 0.00001)× 101 = 0.31416× 101 = 3.1416.

The error that results from replacing a number with its floating-point form is
called round-off error (regardless of whether the rounding or chopping method is
used). There are two common methods for measuring approximation errors.

The approximation p∗ to p has absolute error |p − p∗| and relative error
|p− p∗|/|p|, provided that p
= 0.

EXAMPLE 2 a.If p = 0.3000×101 and p∗ = 0.3100×101, the absolute error is 0.1 and the relative
error is 0.3333× 10−1.

b.If p = 0.3000 × 10−3 and p∗ = 0.3100 × 10−3, the absolute error is 0.1 × 10−4,
but the relative error is again 0.3333× 10−1.

c.If p = 0.3000× 104 and p∗ = 0.3100× 104, the absolute error is 0.1× 103, but the
relative error is still 0.3333× 10−1.

This example shows that the same relative error can occur for widely varying
absolute errors. As a measure of accuracy, the absolute error can be misleading and
the relative error is more meaningful, since the relative error takes into consideration
the size of the true value.

The arithmetic operations of addition, subtraction, multiplication, and division
performed by a computer on floating-point numbers also introduce error. These
arithmetic operations involve manipulating binary digits by various shifting and
logical operations, but the actual mechanics of the arithmetic are not pertinent to
our discussion. To illustrate the problems that can occur, we simulate this finite-
digit arithmetic by first performing, at each stage in a calculation, the appropriate
operation using exact arithmetic on the floating-point representations of the num-
bers. We then convert the result to decimal machine-number representation. The
most common round-off error producing arithmetic operation involves the subtrac-
tion of nearly equal numbers.

EXAMPLE 3 Suppose we use four-digit decimal chopping arithmetic to simulate the problem of
performing the computer operation π − 22

7 . The floating-point representations of
these numbers are

fl(π) = 0.3141× 101 and fl

(
22
7

)
= 0.3142× 101.

Performing the exact arithmetic on the floating-point numbers gives

fl(π)− fl

(
22
7

)
= −0.0001× 101,

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 21

which converts to the floating-point approximation of this calculation:

p∗ = fl

(
fl(π)− fl

(
22
7

))
= −0.1000× 10−2.

Although the relative errors using the floating-point representations for π and 22
7

are small, ∣∣∣∣π − fl(π)
π

∣∣∣∣ ≤ 0.0002 and

∣∣∣∣∣ 22
7 − fl

(
22
7

)
22
7

∣∣∣∣∣ ≤ 0.0003,

the relative error produced by subtracting the nearly equal numbers π and 22
7 is

about 700 times as large: ∣∣∣∣∣
(
π − 22

7

)
− p∗(

π − 22
7

) ∣∣∣∣∣ ≈ 0.2092.

Rounding arithmetic is easily implemented in Maple. The statement

>Digits:=t;

causes all arithmetic to be rounded to t digits. For example, fl(fl(x) + fl(y)) is
performed using t-digit rounding arithmetic by

>evalf(evalf(x)+evalf(y));

Implementing t-digit chopping arithmetic in Maple is more difficult and requires
a sequence of steps or a procedure. Exercise 12 explores this problem.

22CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

EXERCISE SET 1.3

1. Compute the absolute error and relative error in approximations of p by p∗.

(a) p = π, p∗ = 22
7

(b) p = π, p∗ = 3.1416

(c) p = e, p∗ = 2.718 (d) p =
√

2, p∗ = 1.414

(e) p = e10, p∗ = 22000 (f) p = 10π, p∗ = 1400

(g) p = 8!, p∗ = 39900 (h) p = 9!, p∗ =
√

18π (9/e)9

2. Perform the following computations (i) exactly, (ii) using three-digit chopping
arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the
relative errors in parts (ii) and (iii).

(a)
4
5

+
1
3

(b)
4
5
· 1
3

(c)
(

1
3
− 3

11

)
+

3
20

(d)
(

1
3

+
3
11

)
− 3

20

3. Use three-digit rounding arithmetic to perform the following calculations.
Compute the absolute error and relative error with the exact value determined
to at least five digits.

(a) 133 + 0.921 (b) 133− 0.499

(c) (121− 0.327)− 119 (d) (121− 119)− 0.327

(e)
13
14 −

6
7

2e− 5.4
(f) −10π + 6e− 3

62

(g)
(

2
9

)
·
(

9
7

)
(h)

π − 22
7

1
17

4. Repeat Exercise 3 using three-digit chopping arithmetic.

5. Repeat Exercise 3 using four-digit rounding arithmetic.

6. Repeat Exercise 3 using four-digit chopping arithmetic.

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 23

7. The first three nonzero terms of the Maclaurin series for the arctan x are
x− 1

3x3 + 1
5x5. Compute the absolute error and relative error in the following

approximations of π using the polynomial in place of the arctanx:

(a) 4
[
arctan

(
1
2

)
+ arctan

(
1
3

)]
(b) 16 arctan

(
1
5

)
− 4 arctan

(
1

239

)

8. The two-by-two linear system

ax + by = e,

cx + dy = f,

where a, b, c, d, e, f are given, can be solved for x and y as follows:

set m =
c

a
, provided a
= 0;

d1 = d−mb;
f1 = f −me;

y =
f1

d1
;

x =
(e− by)

a
.

Solve the following linear systems using four-digit rounding arithmetic.

(a) 1.130x − 6.990y = 14.20
8.110x + 12.20y = −0.1370

(b) 1.013x − 6.099y = 14.22
−18.11x + 112.2y = −0.1376

9. Suppose the points (x0, y0) and (x1, y1) are on a straight line with y1
= y0.
Two formulas are available to find the x-intercept of the line:

x =
x0y1 − x1y0

y1 − y0
and x = x0 −

(x1 − x0)y0

y1 − y0
.

(a) Show that both formulas are algebraically correct.

(b) Use the data (x0, y0) = (1.31, 3.24) and (x1, y1) = (1.93, 4.76) and three-
digit rounding arithmetic to compute the x-intercept both ways. Which
method is better, and why?

10. The Taylor polynomial of degree n for f(x) = ex is
∑n

i=0 xi/i!. Use the
Taylor polynomial of degree nine and three-digit chopping arithmetic to find
an approximation to e−5 by each of the following methods.

24CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

(a) e−5 ≈
9∑

i=0

(−5)i

i!
=

9∑
i=0

(−1)i5i

i!

(b) e−5 =
1
e5
≈ 1∑9

i=0 5i/i!

An approximate value of e−5 correct to three digits is 6.74 × 10−3. Which
formula, (a) or (b), gives the most accuracy, and why?

11. A rectangular parallelepiped has sides 3 cm, 4 cm, and 5 cm, measured to the
nearest centimeter.

(a) What are the best upper and lower bounds for the volume of this par-
allelepiped?

(b) What are the best upper and lower bounds for the surface area?

12. The following Maple procedure chops a floating-point number x to t digits.

chop:=proc(x,t);
if x=0 then 0
else
e:=trunc(evalf(log10(abs(x))));
if e>0 then e:=e+1 fi;
x2:=evalf(trunc(x*10^(t-e))*10^(e-t));
fi
end;

Verify that the procedure works for the following values.

(a) x = 124.031, t = 5 (b) x = 124.036, t = 5

(c) x = −0.00653, t = 2 (d) x = −0.00656, t = 2

1.4. ERRORS IN SCIENTIFIC COMPUTATION 25

1.4 Errors in Scientific Computation

In the previous section we saw how computational devices represent and manipulate
numbers using finite-digit arithmetic. We now examine how the problems with this
arithmetic can compound and look at ways to arrange arithmetic calculations to
reduce this inaccuracy.

The loss of accuracy due to round-off error can often be avoided by a careful
sequencing of operations or a reformulation of the problem. This is most easily
described by considering a common computational problem.

EXAMPLE 1 The quadratic formula states that the roots of ax2 + bx + c = 0, when a
= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b−
√

b2 − 4ac

2a
.

Consider this formula applied, using four-digit rounding arithmetic, to the equation
x2 + 62.10x + 1 = 0, whose roots are approximately x1 = −0.01610723 and x2 =
−62.08390. In this equation, b2 is much larger than 4ac, so the numerator in the
calculation for x1 involves the subtraction of nearly equal numbers. Since√

b2 − 4ac =
√

(62.10)2 − (4.000)(1.000)(1.000) =
√

3856− 4.000 = 62.06,

we have
fl(x1) =

−62.10 + 62.06
2.000

=
−0.04000

2.000
= −0.02000,

a poor approximation to x1 = −0.01611 with the large relative error

|−0.01611 + 0.02000|
|−0.01611| = 2.4× 10−1.

On the other hand, the calculation for x2 involves the addition of the nearly equal
numbers −b and −

√
b2 − 4ac. This presents no problem since

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10

has the small relative error

|−62.08 + 62.10|
|−62.08| = 3.2× 10−4.

To obtain a more accurate four-digit rounding approximation for x1, we can change
the form of the quadratic formula by rationalizing the numerator:

x1 =

(
−b +

√
b2 − 4ac

2a

)(
−b−

√
b2 − 4ac

−b−
√

b2 − 4ac

)
=

b2 − (b2 − 4ac)
2a(−b−

√
b2 − 4ac)

,

which simplifies to

x1 =
−2c

b +
√

b2 − 4ac
.

26CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Table 1.1:
x x2 x3 6.1x2 3.2x

Exact 4.71 22.1841 104.487111 135.32301 15.072
Three-digit (chopping) 4.71 22.1 104. 134. 15.0
Three-digit (rounding) 4.71 22.2 105. 135. 15.1

Using this form of the equation gives

fl(x1) =
−2.000

62.10 + 62.06
=
−2.000
124.2

= −0.01610,

which has the small relative error 6.2× 10−4.

The rationalization technique in Example 1 can also be applied to give an al-
ternative formula for x2:

x2 =
−2c

b−
√

b2 − 4ac
.

This is the form to use if b is negative. In Example 1, however, the use of this
formula results in the subtraction of nearly equal numbers, which produces the
result

fl(x2) =
−2.000

62.10− 62.06
=
−2.000
0.04000

= −50.00,

with the large relative error 1.9× 10−1.

EXAMPLE 2 Evaluate f(x) = x3 − 6.1x2 + 3.2x + 1.5 at x = 4.71 using three-digit arithmetic.
Table 1.1 gives the intermediate results in the calculations. Carefully verify these

results to be sure that your notion of finite-digit arithmetic is correct. Note that the
three-digit chopping values simply retain the leading three digits, with no rounding
involved, and differ significantly from the three-digit rounding values.

Exact: f(4.71) = 104.487111− 135.32301 + 15.072 + 1.5
= −14.263899;

Three-digit (chopping): f(4.71) = ((104.− 134.) + 15.0) + 1.5 = −13.5;
Three-digit (rounding): f(4.71) = ((105.− 135.) + 15.1) + 1.5 = −13.4.

The relative errors for the three-digit methods are∣∣∣∣−14.263899 + 13.5
−14.263899

∣∣∣∣ ≈ 0.05 for chopping

1.4. ERRORS IN SCIENTIFIC COMPUTATION 27

and ∣∣∣∣−14.263899 + 13.4
−14.263899

∣∣∣∣ ≈ 0.06 for rounding.

As an alternative approach, f(x) can be written in a nested manner as

f(x) = x3 − 6.1x2 + 3.2x + 1.5 = ((x− 6.1)x + 3.2)x + 1.5.

This gives

Three-digit (chopping): f(4.71) = ((4.71− 6.1)4.71 + 3.2)4.71 + 1.5 = −14.2

and a three-digit rounding answer of −14.3. The new relative errors are

Three-digit (chopping):
∣∣∣∣−14.263899 + 14.2
−14.263899

∣∣∣∣ ≈ 0.0045;

Three-digit (rounding):
∣∣∣∣−14.263899 + 14.3
−14.263899

∣∣∣∣ ≈ 0.0025.

Nesting has reduced the relative error for the chopping approximation to less than
one-tenth that obtained initially. For the rounding approximation the improvement
has been even more dramatic: the error has been reduced by more than 95%. Nested
multiplication should be performed whenever a polynomial is evaluated since it
minimizes the number of error producing computations.

We will be considering a variety of approximation problems throughout the text,
and in each case we need to determine approximation methods that produce de-
pendably accurate results for a wide class of problems. Because of the differing ways
in which the approximation methods are derived, we need a variety of conditions
to categorize their accuracy. Not all of these conditions will be appropriate for any
particular problem.

One criterion we will impose, whenever possible, is that of stability. A method
is called stable if small changes in the initial data produce correspondingly small
changes in the final results. When it is possible to have small changes in the initial
date producing large changes in the final results, the method is unstable. Some
methods are stable only for certain choices of initial data. These methods are called
conditionally stable. We attempt to characterize stability properties whenever pos-
sible.

One of the most important topics effecting the stability of a method is the way
in which the round-off error grows as the method is successively applied. Suppose
an error with magnitude E0 > 0 is introduced at some stage in the calculations
and that the magnitude of the error after n subsequent operations is En. There are
two distinct cases that often arise in practice. If a constant C exists independent
of n, with En ≈ CnE0, the growth of error is linear. If a constant C > 1 exists
independent of n, with En ≈ CnE0, the growth of error is exponential. (It would

28CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

be unlikely to have En ≈ CnE0, with C < 1, since this implies that the error tends
to zero.)

Linear growth of error is usually unavoidable and, when C and E0 are small,
the results are generally acceptable. Methods having exponential growth of error
should be avoided, since the term Cn becomes large for even relatively small values
of n and E0. As a consequence, a method that exhibits linear error growth is stable,
while one exhibiting exponential error growth is unstable. (See Figure 1.9 .)

Figure 1.9

En

E0

n

Exponential growth
En 5 CnE0

Linear growth
En 5 CnE0

1 2 3 4 5 6 7 8

Since iterative techniques involving sequences are often used, the section con-
cludes with a brief discussion of some terminology used to describe the rate at
which convergence occurs when employing a numerical technique. In general, we
would like to choose techniques that converge as rapidly as possible. The following
definition is used to compare the convergence rates of various methods.

Suppose that {αn}∞n=1 is a sequence that converges to a number α as n becomes
large. If positive constants p and K exist with

|α− αn| ≤
K

np
, for all large values of n,

then we say that {αn} converges to α with rate, or order, of convergence
O(1/np) (read “big oh of 1/np”). This is indicated by writing αn = α + O(1/np)
and stated as “αn → α with rate of convergence 1/np.” We are generally interested
in the largest value of p for which αn = α + O(1/np).

We also use the “big oh” notation to describe how some divergent sequences
grow as n becomes large. If positive constants p and K exist with

|αn| ≤ Knp, for all large values of n,

1.4. ERRORS IN SCIENTIFIC COMPUTATION 29

Table 1.2:
n 1 2 3 4 5 6 7

αn 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327
α̂n 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

then we say that {αn} goes to ∞ with rate, or order, O(np). In the case of
a sequence that becomes infinite, we are interested in the smallest value of p for
which αn is O(np).

The “big oh” definition for sequences can be extended to incorporate more
general sequences, but the definition as presented here is sufficient for our purposes.

EXAMPLE 3 Suppose that the sequences {αn} and {α̂n} are described by

αn =
n + 1
n2

and α̂n =
n + 3
n3

.

Although both limn→∞ αn = 0 and limn→∞ α̂n = 0, the sequence {α̂n} converges to
this limit much faster than does {αn}. This can be seen from the five-digit rounding
entries for the sequences shown in Table 1.2.

Since

|αn − 0| = n + 1
n2

≤ n + n

n2
= 2 · 1

n

and

|α̂n − 0| = n + 3
n3

≤ n + 3n

n3
= 4 · 1

n2
,

we have

αn = 0 + O

(
1
n

)
and α̂n = 0 + O

(
1
n2

)
.

This result implies that the convergence of the sequence {αn} is similar to the
convergence of {1/n} to zero. The sequence {α̂n} converges in a manner similar to
the faster-converging sequence {1/n2}.

We also use the “big oh” concept to describe the rate of convergence of functions,
particularly when the independent variable approaches zero.

Suppose that F is a function that converges to a number L as h goes to zero. If
positive constants p and K exist with

|F (h)− L| ≤ Khp, as h→ 0,

30CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

then F(h) converges to L with rate, or order, of convergence O(hp). This
is written as F (h) = L + O(hp) and stated as “F (h)→ L with rate of convergence
hp.”

We are generally interested in the largest value of p for which F (h) = L+O(hp).
The “big oh” definition for functions can also be extended to incorporate more

general zero-converging functions in place of hp.

1.4. ERRORS IN SCIENTIFIC COMPUTATION 31

EXERCISE SET 1.4

1. (i) Use four-digit rounding arithmetic and the formulas of Example 1 to find
the most accurate approximations to the roots of the following quadratic
equations. (ii) Compute the absolute errors and relative errors for these ap-
proximations.

(a)
1
3
x2 − 123

4
x +

1
6

= 0 (b)
1
3
x2 +

123
4

x− 1
6

= 0

(c) 1.002x2 − 11.01x + 0.01265 = 0 (d) 1.002x2 + 11.01x + 0.01265 = 0

2. Repeat Exercise 1 using four-digit chopping arithmetic.

3. Let f(x) = 1.013x5 − 5.262x3 − 0.01732x2 + 0.8389x− 1.912.

(a) Evaluate f(2.279) by first calculating (2.279)2, (2.279)3, (2.279)4, and
(2.279)5 using four-digit rounding arithmetic.

(b) Evaluate f(2.279) using the formula

f(x) = (((1.013x2 − 5.262)x− 0.01732)x + 0.8389)x− 1.912

and four-digit rounding arithmetic.

(c) Compute the absolute and relative errors in parts (a) and (b).

4. Repeat Exercise 3 using four-digit chopping arithmetic.

5. The fifth Maclaurin polynomials for e2x and e−2x are

P5(x) =
((((

4
15

x +
2
3

)
x +

4
3

)
x + 2

)
x + 2

)
x + 1

and

P̂5(x) =
((((

− 4
15

x +
2
3

)
x− 4

3

)
x + 2

)
x− 2

)
x + 1

(a) Approximate e−0.98 using P̂5(0.49) and four-digit rounding arithmetic.

(b) Compute the absolute and relative error for the approximation in part
(a).

(c) Approximate e−0.98 using 1/P5(0.49) and four-digit rounding arith-
metic.

(d) Compute the absolute and relative errors for the approximation in part
(c).

32CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

6. (a) Show that the polynomial nesting technique described in Example 2 can
also be applied to the evaluation of

f(x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.

(b) Use three-digit rounding arithmetic, the assumption that e1.53 = 4.62,
and the fact that en(1.53) = (e1.53)n to evaluate f(1.53) as given in part
(a).

(c) Redo the calculation in part (b) by first nesting the calculations.

(d) Compare the approximations in parts (b) and (c) to the true three-digit
result f(1.53) = −7.61.

7. Use three-digit chopping arithmetic to compute the sum
∑10

i=1 1/i2 first by
1
1 + 1

4 + · · · + 1
100 and then by 1

100 + 1
81 + · · · + 1

1 . Which method is more
accurate, and why?

8. The Maclaurin series for the arctangent function converges for −1 < x ≤ 1
and is given by

arctan x = lim
n→∞Pn(x) = lim

n→∞

n∑
i=1

(−1)i+1 x2i−1

(2i− 1)
.

(a) Use the fact that tanπ/4 = 1 to determine the number of terms of the
series that need to be summed to ensure that |4Pn(1)− π| < 10−3.

(b) The C programming language requires the value of π to be within 10−10.
How many terms of the series would we need to sum to obtain this degree
of accuracy?

9. The number e is defined by e =
∑∞

n=0 1/n!, where n! = n(n− 1) · · · 2 · 1, for
n
= 0 and 0! = 1. (i) Use four-digit chopping arithmetic to compute the
following approximations to e. (ii) Compute absolute and relative errors for
these approximations.

(a)
5∑

n=0

1
n!

(b)
5∑

j=0

1
(5− j)!

(c)
10∑

n=0

1
n!

(d)
10∑

j=0

1
(10− j)!

1.4. ERRORS IN SCIENTIFIC COMPUTATION 33

10. Find the rates of convergence of the following sequences as n→∞.

(a) lim
n→∞ sin

(
1
n

)
= 0 (b) lim

n→∞ sin
(

1
n2

)
= 0

(c) lim
n→∞

(
sin

(
1
n

))2

= 0
(d) lim

n→∞[ln(n + 1)− ln(n)] = 0

11. Find the rates of convergence of the following functions as h→ 0.

(a) lim
h→0

sin h− h cos h

h
= 0 (b) lim

h→0

1− eh

h
= −1

(c) lim
h→0

sin h

h
= 1 (d) lim

h→0

1− cos h

h
= 0

12. (a) How many multiplications and additions are required to determine a
sum of the form

n∑
i=1

i∑
j=1

aibj?

(b) Modify the sum in part (a) to an equivalent form that reduces the
number of computations.

13. The sequence {Fn} described by F0 = 1, F1 = 1, and Fn+2 = Fn + Fn+1,
if n ≥ 0, is called a Fibonacci sequence. Its terms occur naturally in many
botanical species, particularly those with petals or scales arranged in the form
of a logarithmic spiral. Consider the sequence {xn}, where xn = Fn+1/Fn.
Assuming that limn→∞ xn = x exists, show that x is the golden ratio (1 +√

5)/2.

14. The Fibonacci sequence also satisfies the equation

Fn ≡ F̃n =
1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
.

(a) Write a Maple procedure to calculate F100.

(b) Use Maple with the default value of Digits followed by evalf to calcu-
late
F̃100.

34CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

(c) Why is the result from part (a) more accurate than the result from part
(b)?

(d) Why is the result from part (b) obtained more rapidly than the result
from part (a)?

(e) What results when you use the command simplify instead of evalf to
compute F̃100?

15. The harmonic series 1 + 1
2 + 1

3 + 1
4 + · · · diverges, but the sequence γn =

1+ 1
2+· · ·+ 1

n−ln n converges, since {γn} is a bounded, nonincreasing sequence.
The limit γ ≈ 0.5772156649 . . . of the sequence {γn} is called Euler’s constant.

(a) Use the default value of Digits in Maple to determine the value of n
for γn to be within 10−2 of γ.

(b) Use the default value of Digits in Maple to determine the value of n
for γn to be within 10−3 of γ.

(c) What happens if you use the default value of Digits in Maple to de-
termine the value of n for γn to be within 10−4 of γ?

1.5. COMPUTER SOFTWARE 35

1.5 Computer Software

Computer software packages for approximating the numerical solutions to problems
are available in many forms. With this book, we have provided programs written
in C, Fortran 77, Maple, Mathematica, MATLAB, and Pascal that can be used to
solve the problems given in the examples and exercises. These programs will give
satisfactory results for most problems that a student might need to solve, but they
are what we call special-purpose programs. We use this term to distinguish these
programs from those available in the standard mathematical subroutine libraries.
The programs in these packages will be called general purpose.

The programs in general-purpose software packages differ in their intent from
the programs provided with this book. General-purpose software packages consider
ways to reduce errors due to machine rounding, underflow, and overflow. They also
describe the range of input that will lead to results of a certain specified accuracy.
Since these are machine-dependent characteristics, general-purpose software pack-
ages use parameters that describe the floating-point characteristics of the machine
being used for computations.

There are many forms of general-purpose numerical software available com-
mercially and in the public domain. Most of the early software was written for
mainframe computers, and a good reference for this is Sources and Development of
Mathematical Software, edited by Wayne Crowell [Cr]. Now that the desktop com-
puter has become sufficiently powerful, standard numerical software is available for
personal computers and workstations. Most of this numerical software is written in
Fortran 77, although some packages are written in C, C++, and Fortran 90.

ALGOL procedures were presented for matrix computations in 1971 in [WR].
A package of FORTRAN subroutines based mainly on the ALGOL procedures
was then developed into the EISPACK routines. These routines are documented
in the manuals published by Springer-Verlag as part of their Lecture Notes in
Computer Science series [SBIKM] and [GBDM]. The FORTRAN subroutines are
used to compute eigenvalues and eigenvectors for a variety of different types of
matrices. The EISPACK project was the first large-scale numerical software package
to be made available in the public domain and led the way for many packages to
follow. EISPACK is mantained by netlib and can be found on the Internet at
http://www.netlib.org/eispack.

LINPACK is a package of Fortran 77 subroutines for analyzing and solving
systems of linear equations and solving linear least squares problems. The docu-
mentation for this package is contained in [DBMS] and located on the Internet
at http://www.netlib.org/linpack. A step-by-step introduction to LINPACK, EIS-
PACK, and BLAS (Basic Linear Algebra Subprograms) is given in [CV].

The LAPACK package, first available in 1992, is a library of Fortran 77 sub-
routines that supersedes LINPACK and EISPACK by integrating these two sets
of algorithms into a unified and updated package. The software has been restruc-
tured to achieve greater efficiency on vector processors and other high-performance
or shared-memory multiprocessors. LAPACK is expanded in depth and breadth in
version 3.0, which is available in Fortran 77, Fortran 90, C, C++, and JAVA. For-
tran 90, C, and JAVA are only available as language interfaces or translations of the

36CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

FORTRAN libraries of LAPACK. The package BLAS is not a part of LAPACK,
but the code for BLAS is distributed with LAPACK. The LAPACK User’s Guide,
3rd ed. [An] is available from SIAM or on the Internet at
http://www.netlib.org/lapack/lug/lapack lug.html.
The complete LAPACK or individual routines from LAPACK can be obtained
through netlib at netlibornl.gov, netlibresearch.att.com, or http://www.netlib.org/lapack.

Other packages for solving specific types of problems are available in the pub-
lic domain. Information about these programs can be obtained through electronic
mail by sending the line “help” to one of the following Internet addresses: netlibre-
search.att.com, netlibornl.gov, netlibnac.no, or netlibdraci.cs.uow.edu.au or to the
uucp address uunet!research!netlib.

These software packages are highly efficient, accurate, and reliable. They are
thoroughly tested, and documentation is readily available. Although the packages
are portable, it is a good idea to investigate the machine dependence and read the
documentation thoroughly. The programs test for almost all special contingencies
that might result in error and failures. At the end of each chapter we will discuss
some of the appropriate general-purpose packages.

Commercially available packages also represent the state of the art in numerical
methods. Their contents are often based on the public-domain packages but include
methods in libraries for almost every type of problem.

IMSL (International Mathematical and Statistical Libraries) consists of the li-
braries MATH, STAT, and SFUN for numerical mathematics, statistics, and special
functions, respectively. These libraries contain more than 900 subroutines originally
available in Fortran 77 and now available in C, Fortran 90, and JAVA. These sub-
routines solve the most common numerical analysis problems. In 1970 IMSL became
the first large-scale scientific library for mainframes. Since that time, the libraries
have been made available for computer systems ranging from supercomputers to
personal computers. The libraries are available commercially from Visual Numer-
ics, 9990 Richmond Ave S400, Houston, TX 77042-4548, with Internet address
http://www.vni.com. The packages are delivered in compiled form with extensive
documentation. There is an example program for each routine as well as background
reference information. IMSL contains methods for linear systems, eigensystem anal-
ysis, interpolation and approximation, integration and differentiation, differential
equations, transforms, nonlinear equations, optimization, and basic matrix/vector
operations. The library also contains extensive statistical routines.

The Numerical Algorithms Group (NAG) has been in existence in the United
Kingdom since 1970. NAG offers more than 1000 subroutines in a Fortran 77 library,
about 400 subroutines in a C library, over 200 subroutines in a Fortran 90 library,
and an MPI FORTRAN numerical library for parallel machines and clusters of
workstations or personal computers. A subset of their Fortran 77 library (the NAG
Foundation Library) is available for personal computers and workstations where
work space is limited. The NAG C Library, the Fortran 90 library, and the MPI
FORTRAN library offer many of the same routines as the FORTRAN Library.
The NAG user’s manual includes instructions and examples, along with sample
output for each of the routines. A useful introduction to the NAG routines is [Ph].
The NAG library contains routines to perform most standard numerical analysis

1.5. COMPUTER SOFTWARE 37

tasks in a manner similar to those in the IMSL. It also includes some statistical
routines and a set of graphic routines. The library is commercially available from
Numerical Algorithms Group, Inc., 1400 Opus Place, Suite 200, Downers Grove, IL
60515–5702, with Internet address http://www.nag.com.

The IMSL and NAG packages are designed for the mathematician, scientist,
or engineer who wishes to call high-quality FORTRAN subroutines from within
a program. The documentation available with the commercial packages illustrates
the typical driver program required to use the library routines. The next three
software packages are stand-alone environments. When activated, the user enters
commands to cause the package to solve a problem. However, each package allows
programming within the command language.

MATLAB is a matrix laboratory that was originally a FORTRAN program pub-
lished by Cleve Moler [Mo]. The laboratory is based mainly on the EISPACK and
LINPACK subroutines, although functions such as nonlinear systems, numerical in-
tegration, cubic splines, curve fitting, optimization, ordinary differential equations,
and graphical tools have been incorporated. MATLAB is currently written in C and
assembler, and the PC version of this package requires a numeric coprocessor. The
basic structure is to perform matrix operations, such as finding the eigenvalues of
a matrix entered from the command line or from an external file via function calls.
This is a powerful self-contained system that is especially useful for instruction in
an applied linear algebra course. MATLAB has been available since 1985 and can be
purchased from The MathWorks Inc., Cochituate Place, 24 Prime Park Way, Natick,
MA 01760. The electronic mail address of The Mathworks is infomathworks.com,
and the Internet address is http://www.mathworks.com. MATLAB software is de-
signed to run on many computers, including IBM PC compatibles, APPLE Mac-
intosh, and SUN workstations. A student version of MATLAB does not require a
coprocessor but will use one if it is available.

The second package is GAUSS, a mathematical and statistical system produced
by Lee E. Ediefson and Samuel D. Jones in 1985. It is coded mainly in assembler
and based primarily on EISPACK and LINPACK. As in the case of MATLAB,
integration/differentiation, nonlinear systems, fast Fourier transforms, and graphics
are available. GAUSS is oriented less toward instruction in linear algebra and more
toward statistical analysis of data. This package also uses a numeric coprocessor if
one is available. It can be purchased from Aptech Systems, Inc., 23804 S.E. Kent-
Kangley Road, Maple Valley, WA 98038 (infoaptech.com).

The third package is Maple, a computer algebra system developed in 1980 by the
Symbolic Computational Group at the University of Waterloo. The design for the
original Maple system is presented in the paper by B.W. Char, K.O. Geddes, W.M.
Gentlemen, and G.H. Gonnet [CGGG]. Maple has been available since 1985 and can
be purchased from Waterloo Maple Inc., 57 Erb Street, Waterloo, ON N2L 6C2. The
electronic mail address of Waterloo Maple is infomaplesoft.com, and the Internet
address is http://www.maplesoft.com. Maple, which is written in C, has the ability
to manipulate information in a symbolic manner. This symbolic manipulation allows
the user to obtain exact answers instead of numerical values. Maple can give exact
answers to mathematical problems such as integrals, differential equations, and
linear systems. Maple has the additional property of allowing worksheets, which

38CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

contain written text and Maple commands. These worksheets can then be loaded
into Maple and the commands executed. Because of the properties of symbolic
computation, numerical computation, and worksheets, Maple is the language of
choice for this text. Throughout the book Maple commands will be embedded into
the text.

Numerous packages are available that can be classified as supercalculator pack-
ages for the PC. These should not be confused, however, with the general-purpose
software listed here. If you have an interest in one of these packages, you should
read Supercalculators on the PC by B. Simon and R. M. Wilson [SW].

Additional information about software and software libraries can be found in
the books by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by
Dongarra and Walker [DW]. More information about floating-point computation
can be found in the book by Chaitini-Chatelin and Frayse [CF] and the article by
Goldberg [Go].

Books that address the application of numerical techniques on parallel comput-
ers include those by Schendell [Sche], Phillips and Freeman [PF], and Golub and
Ortega [GO].

