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2.4 Newton’s Method

The Bisection and Secant methods both have geometric representations that use
the zero of an approximating line to the graph of a function f to approximate
the solution to f(x) = 0. The increase in accuracy of the Secant method over the
Bisection method is a consequence of the fact that the secant line to the curve better
approximates the graph of f than does the line used to generate the approximations
in the Bisection method.

The line that best approximates the graph of the function at a point on its graph
is the tangent line to the graph at that point. Using this line instead of the secant
line produces Newton’s method (also called the Newton–Raphson method), the
technique we consider in this section.

Suppose that p0 is an initial approximation to the root p of the equation f(x) = 0
and that f ′ exists in an interval containing all the approximations to p. The slope of
the tangent line to the graph of f at the point (p0, f(p0)) is f ′(p0), so the equation
of this tangent line is

y − f(p0) = f ′(p0)(x− p0).

Since this line crosses the x-axis when the y-coordinate of the point on the line
is zero, the next approximation, p1, to p satisfies

0− f(p0) = f ′(p0)(p1 − p0),

which implies that

p1 = p0 −
f(p0)
f ′(p0)

,

provided that f ′(p0) 
= 0. Subsequent approximations are found for p in a similar
manner, as shown in Figure 2.6.

Figure 2.6
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[Newton’s Method] The approximation pn+1 to a root of f(x) = 0 is computed
from the approximation pn using the equation

pn+1 = pn −
f(pn)
f ′(pn)

.

EXAMPLE 1 In this example we use Newton’s method to approximate the root of the equation
x3 +4x2−10 = 0. Maple is used to find the first iteration of Newton’s method with
p0 = 1. We define f(x) and compute f ′(x) by

>f:=x->x^3+4*x^2-10;
>fp:=x->D(f)(x);
>p0:=1;

The first iteration of Newton’s method gives p1 = 16
11 , which is obtained with

>p1:=p0-f(p0)/fp(p0);

A decimal representation of 1.454545455 for p1 is given by

>p1:=evalf(p1);

The process can be continued to generate the entries in Table 2.4.

Table 2.4
n pn f(pn)

1 1.4545454545 1.5401953418
2 1.3689004011 0.0607196886
3 1.3652366002 0.0001087706
4 1.3652300134 0.0000000004

We use p0 = 1, TOL = 0.0005, and N0 = 20 in the program NEWTON24
to compare the convergence of this method with those applied to this problem
previously. The number of iterations needed to solve the problem by Newton’s
method is less than the number needed for the Secant method, which, in turn,
required less than half the iterations needed for the Bisection method. In addition,
for Newton’s method we have |p− p4| ≈ 10−10.
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Newton’s method generally produces accurate results in just a few iterations.
With the aid of Taylor polynomials we can see why this is true. Suppose p is the
solution to f(x) = 0 and that f ′′ exists on an interval containing both p and the
approximation pn. Expanding f in the first Taylor polynomial at pn and evaluating
at x = p gives

0 = f(p) = f(pn) + f ′(pn)(p− pn) +
f ′′(ξ)

2
(p− pn)2,

where ξ lies between pn and p. Consequently, if f ′(pn) 
= 0, we have

p− pn +
f(pn)
f ′(pn)

= − f ′′(ξ)
2f ′(pn)

(p− pn)2.

Since

pn+1 = pn −
f(pn)
f ′(pn)

,

this implies that

p− pn+1 = − f ′′(ξ)
2f ′(pn)

(p− pn)2.

If a positive constant M exists with |f ′′(x)| ≤M on an interval about p, and if
pn is within this interval, then

|p− pn+1| ≤
M

2|f ′(pn)| |p− pn|2.

The important feature of this inequality is that the error |p − pn+1| of the (n +
1)st approximation is bounded by approximately the square of the error of the
nth approximation, |p− pn|. This implies that Newton’s method has the tendency
to approximately double the number of digits of accuracy with each successive
approximation. Newton’s method is not, however, infallible, as the equation in
Exercise 12 shows.

EXAMPLE 2 Find an approximation to the solution of the equation x = 3−x that is accurate to
within 10−8.

A solution of this equation corresponds to a solution of

0 = f(x) = x− 3−x.

Since f is continuous with f(0) = −1 and f(1) = 2
3 , a solution of the equation lies

in the interval (0, 1). We have chosen the initial approximation to be the midpoint
of this interval, p0 = 0.5. Succeeding approximations are generated by applying the
formula

pn+1 = pn −
f(pn)
f ′(pn)

= pn −
pn − 3−pn

1 + 3−pn ln 3
.



58 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

These approximations are listed in Table 2.5, together with differences between
successive approximations. Since Newton’s method tends to double the number of
decimal places of accuracy with each iteration, it is reasonable to suspect that p3

is correct at least to the places listed.

Table 2.5
n pn |pn − pn−1|

0 0.500000000
1 0.547329757 0.047329757
2 0.547808574 0.000478817
3 0.547808622 0.000000048

The success of Newton’s method is predicated on the assumption that the deriva-
tive of f is nonzero at the approximations to the root p. If f ′ is continuous, this
means that the technique will be satisfactory provided that f ′(p) 
= 0 and that a
sufficiently accurate initial approximation is used. The condition f ′(p) 
= 0 is not
trivial; it is true precisely when p is a simple root. A simple root of a function f
occurs at p if a function q exists with the property that, for x 
= p,

f(x) = (x− p)q(x), where lim
x→p

q(x) 
= 0.

When the root is not simple, Newton’s method may converge, but not with the
speed we have seen in our previous examples.

EXAMPLE 3 The root p = 0 of the equation f(x) = ex − x − 1 = 0 is not simple, since both
f(0) = e0 − 0 − 1 = 0 and f ′(0) = e0 − 1 = 0. The terms generated by Newton’s
method with p0 = 0 are shown in Table 2.6 and converge slowly to zero. The graph
of f is shown in Figure 2.7.

Table 2.6
n pn n pn

0 1.0 9 2.7750× 10−3

1 0.58198 10 1.3881× 10−3

2 0.31906 11 6.9411× 10−4

3 0.16800 12 3.4703× 10−4

4 0.08635 13 1.7416× 10−4

5 0.04380 14 8.8041× 10−5

6 0.02206
7 0.01107
8 0.005545

Figure 2.7
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EXERCISE SET 2.4

1. Let f(x) = x2 − 6 and p0 = 1. Use Newton’s method to find p2.

2. Let f(x) = −x3− cos x and p0 = −1. Use Newton’s method to find p2. Could
p0 = 0 be used for this problem?

3. Use Newton’s method to find solutions accurate to within 10−4 for the fol-
lowing problems.

(a) x3 − 2x2 − 5 = 0, on [1, 4]

(b) x3 + 3x2 − 1 = 0, on [−3,−2]

(c) x− cos x = 0, on [0, π/2]

(d) x− 0.8− 0.2 sin x = 0, on [0, π/2]

4. Use Newton’s method to find solutions accurate to within 10−5 for the fol-
lowing problems.

(a) 2x cos 2x− (x− 2)2 = 0, on [2, 3] and [3, 4]

(b) (x− 2)2 − ln x = 0, on [1, 2] and [e, 4]

(c) ex − 3x2 = 0, on [0, 1] and [3, 5]

(d) sinx− e−x = 0, on [0, 1], [3, 4], and [6, 7]

5. Use Newton’s method to find all four solutions of 4x cos(2x) − (x − 2)2 = 0
in [0, 8] accurate to within 10−5.

6. Use Newton’s method to find all solutions of x2 + 10 cos x = 0 accurate to
within 10−5.

7. Use Newton’s method to approximate the solutions of the following equations
to within 10−5 in the given intervals. In these problems the convergence will
be slower than normal since the roots are not simple roots.

(a) x2 − 2xe−x + e−2x = 0, on [0, 1]

(b) cos(x +
√

2) + x
(
x/2 +

√
2
)

= 0, on [−2,−1]

(c) x3 − 3x2(2−x) + 3x(4−x) + 8−x = 0, on [0, 1]

(d) e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3, on [−1, 0]

8. The numerical method defined by

pn = pn−1 −
f(pn−1)f ′(pn−1)

[f ′(pn−1)]2 − f(pn−1)f ′′(pn−1)
,

for n = 1, 2, . . . , can be used instead of Newton’s method for equations having
multiple roots. Repeat Exercise 7 using this method.
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9. Use Newton’s method to find an approximation to
√

3 correct to within 10−4,
and compare the results to those obtained in Exercise 9 of Sections 2.2 and
2.3.

10. Use Newton’s method to find an approximation to 3
√

25 correct to within
10−6, and compare the results to those obtained in Exercise 10 of Section 2.2
and 2.3.

11. In Exercise 14 of Section 2.3 we found that for f(x) = tan πx − 6, the Bi-
section method on [0, 0.48] converges more quickly than the method of False
Position with p0 = 0 and p1 = 0.48. Also, the Secant method with these val-
ues of p0 and p1 does not give convergence. Apply Newton’s method to this
problem with (a) p0 = 0, and (b) p0 = 0.48. (c) Explain the reason for any
discrepancies.

12. Use Newton’s method to determine the first positive solution to the equation
tan x = x, and explain why this problem can give difficulties.

13. Use Newton’s method to solve the equation

0 =
1
2

+
1
4
x2 − x sinx− 1

2
cos 2x, with p0 =

π

2
.

Iterate using Newton’s method until an accuracy of 10−5 is obtained. Explain
why the result seems unusual for Newton’s method. Also, solve the equation
with p0 = 5π and p0 = 10π.

14. Use Maple to determine how many iterations of Newton’s method with p0 =
π/4 are needed to find a root of f(x) = cos x− x to within 10−100.

15. Player A will shut out (win by a score of 21–0) player B in a game of rac-
quetball with probability

P =
1 + p

2

(
p

1− p + p2

)21

,

where p denotes the probability A will win any specific rally (independent of
the server). (See [K,J], p. 267.) Determine, to within 10−3, the minimal value
of p that will ensure that A will shut out B in at least half the matches they
play.

16. The function described by f(x) = ln(x2 + 1) − e0.4x cos πx has an infinite
number of zeros.

(a) Determine, within 10−6, the only negative zero.

(b) Determine, within 10−6, the four smallest positive zeros.

(c) Determine a reasonable initial approximation to find the nth smallest
positive zero of f . [Hint: Sketch an approximate graph of f .]
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(d) Use part (c) to determine, within 10−6, the 25th smallest positive zero
of f .

17. The accumulated value of a savings account based on regular periodic pay-
ments can be determined from the annuity due equation,

A =
P

i
[(1 + i)n − 1].

In this equation A is the amount in the account, P is the amount regularly
deposited, and i is the rate of interest per period for the n deposit periods.
An engineer would like to have a savings account valued at $750,000 upon
retirement in 20 years and can afford to put $1500 per month toward this
goal. What is the minimal interest rate at which this amount can be invested,
assuming that the interest is compounded monthly?

18. Problems involving the amount of money required to pay off a mortgage over
a fixed period of time involve the formula

A =
P

i
[1− (1 + i)−n],

known as an ordinary annuity equation. In this equation A is the amount of
the mortgage, P is the amount of each payment, and i is the interest rate
per period for the n payment periods. Suppose that a 30-year home mortgage
in the amount of $135,000 is needed and that the borrower can afford house
payments of at most $1000 per month. What is the maximal interest rate the
borrower can afford to pay?

19. A drug administered to a patient produces a concentration in the blood stream
given by c(t) = Ate−t/3 milligrams per milliliter t hours after A units have
been injected. The maximum safe concentration is 1 mg/ml.

(a) What amount should be injected to reach this maximum safe concen-
tration and when does this maximum occur?

(b) An additional amount of this drug is to be administered to the patient
after the concentration falls to 0.25 mg/ml. Determine, to the nearest
minute, when this second injection should be given.

(c) Assuming that the concentration from consecutive injections is additive
and that 75% of the amount originally injected is administered in the
second injection, when is it time for the third injection?

20. Let f(x) = 33x+1 − 7 · 52x.

(a) Use the Maple commands solve and fsolve to try to find all roots of
f .

(b) Plot f(x) to find initial approximations to roots of f .
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(c) Use Newton’s method to find roots of f to within 10−16.

(d) Find the exact solutions of f(x) = 0 algebraically.
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2.5 Error Analysis and Accelerating Convergence

In the previous section we found that Newton’s method generally converges very
rapidly if a sufficiently accurate initial approximation has been found. This rapid
speed of convergence is due to the fact that Newton’s method produces quadratically
convergent approximations.

A method that produces a sequence {pn} of approximations that converge to a
number p converges linearly if, for large values of n, a constant 0 < M < 1 exists
with

|p− pn+1| ≤M |p− pn|.

The sequence converges quadratically if, for large values of n, a constant 0 < M
exists with

|p− pn+1| ≤M |p− pn|2.

The following example illustrates the advantage of quadratic over linear conver-
gence.

EXAMPLE 1 Suppose that {pn} converges linearly to p = 0, {p̂n} converges quadratically to
p = 0, and the constant M = 0.5 is the same in each case. Then

|p1| ≤M |p0| ≤ (0.5) · |p0| and |p̂1| ≤M |p̂0|2 ≤ (0.5) · |p̂0|2.

Similarly,

|p2| ≤M |p1| ≤ 0.5(0.5) · |p0| = (0.5)2|p0|

and

|p̂2| ≤M |p̂1|2 ≤ 0.5(0.5|p̂0|2)2 = (0.5)3|q0|4.

Continuing,

|p3| ≤M |p2| ≤ 0.5((0.5)2|p0|) = (0.5)3|p0|

and

|p̂3| ≤M |p̂2|2 ≤ 0.5((0.5)3|p̂0|4)2 = (0.5)7|q0|8.

In general,

|pn| ≤ 0.5n|p0|, whereas |p̂n| ≤ (0.5)2
n−1|p̂0|2

n

for each n = 1, 2, . . . . Table 2.7 illustrates the relative speed of convergence of these
error bounds to zero, assuming that |p0| = |p̂0| = 1.
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Table 2.7

Linear Convergence Quadratic Convergence
Sequence Bound Sequence Bound

n pn =(0.5)n p̂n =(0.5)2
n−1

1 5.0000× 10−1 5.0000× 10−1

2 2.5000× 10−1 1.2500× 10−1

3 1.2500× 10−1 7.8125× 10−3

4 6.2500× 10−2 3.0518× 10−5

5 3.1250× 10−2 4.6566× 10−10

6 1.5625× 10−2 1.0842× 10−19

7 7.8125× 10−3 5.8775× 10−39

The quadratically convergent sequence is within 10−38 of zero by the seventh
term. At least 126 terms are needed to ensure this accuracy for the linearly conver-
gent sequence. If |p̂0| < 1, the bound on the sequence {p̂n} will decrease even more
rapidly. No significant change will occur, however, if |p0| < 1.

As illustrated in Example 1, quadratically convergent sequences generally con-
verge much more quickly than those that converge only linearly. However, linearly
convergent methods are much more common than those that converge quadrat-
ically. Aitken’s ∆2 method is a technique that can be used to accelerate the
convergence of a sequence that is linearly convergent, regardless of its origin or
application.

Suppose {pn}∞n=0 is a linearly convergent sequence with limit p. To motivate the
construction of a sequence {qn} that converges more rapidly to p than does {pn},
let us first assume that the signs of pn − p, pn+1 − p, and pn+2 − p agree and that
n is sufficiently large that

pn+1 − p

pn − p
≈ pn+2 − p

pn+1 − p
.

Then
(pn+1 − p)2 ≈ (pn+2 − p)(pn − p),

so
p2

n+1 − 2pn+1p + p2 ≈ pn+2pn − (pn + pn+2)p + p2

and
(pn+2 + pn − 2pn+1)p ≈ pn+2pn − p2

n+1.

Solving for p gives

p ≈ pn+2pn − p2
n+1

pn+2 − 2pn+1 + pn
.



66 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Adding and subtracting the terms p2
n and 2pnpn+1 in the numerator and grouping

terms appropriately gives

p ≈ pnpn+2 − 2pnpn+1 + p2
n − p2

n+1 + 2pnpn+1 − p2
n

pn+2 − 2pn+1 + pn

=
pn(pn+2 − 2pn+1 + pn)− (p2

n+1 − 2pnpn+1 + p2
n)

pn+2 − 2pn+1 + pn

= pn −
(pn+1 − pn)2

pn+2 − 2pn+1 + pn
.

Aitken’s ∆2 method uses the sequence {qn}∞n=0 defined by this approximation to p.

[Aitken’s ∆2 Method] If {pn}∞n=0 is a sequence that converges linearly to p,
and if

qn = pn −
(pn+1 − pn)2

pn+2 − 2pn+1 + pn
,

then {qn}∞n=0 also converges to p, and, in general, more rapidly.

EXAMPLE 2 The sequence {pn}∞n=1, where pn = cos(1/n), converges linearly to p = 1. The first
few terms of the sequences {pn}∞n=1 and {qn}∞n=1 are given in Table 2.8. It certainly
appears that {qn}∞n=1 converges more rapidly to p = 1 than does {pn}∞n=1.

Table 2.8
n pn qn

1 0.54030 0.96178
2 0.87758 0.98213
3 0.94496 0.98979
4 0.96891 0.99342
5 0.98007 0.99541
6 0.98614
7 0.98981

For a given sequence {pn}∞n=0, the forward difference, ∆pn (read ”delta pn”),
is defined as

∆pn = pn+1 − pn, for n ≥ 0.

Higher powers of the operator ∆ are defined recursively by

∆kpn = ∆(∆k−1pn), for k ≥ 2.
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The definition implies that

∆2pn = ∆(pn+1 − pn) = ∆pn+1 −∆pn = (pn+2 − pn+1)− (pn+1 − pn),

so
∆2pn = pn+2 − 2pn+1 + pn.

Thus, the formula for qn given in Aitken’s ∆2 method can be written as

qn = pn −
(∆pn)2

∆2pn
, for all n ≥ 0.

The sequence {qn}∞n=1 converges to p more rapidly than does the original se-
quence {pn}∞n=0 in the following sense:

[Aitken’s ∆2 Convergence] If {pn} is a sequence that converges linearly to the
limit p and (pn − p)(pn+1 − p) > 0 for large values of n, and

qn = pn −
(∆pn)2

∆2pn
, then lim

n→∞
qn − p

pn − p
= 0.

We will find occasion to apply this acceleration technique at various times in
our study of approximation methods.
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EXERCISE SET 2.5

1. The following sequences are linearly convergent. Generate the first five terms
of the sequence {qn} using Aitken’s ∆2 method.

(a) p0 = 0.5, pn = (2− epn−1 + p2
n−1)/3, for n ≥ 1

(b) p0 = 0.75, pn = (epn−1/3)1/2, for n ≥ 1

(c) p0 = 0.5, pn = 3−pn−1 , for n ≥ 1

(d) p0 = 0.5, pn = cos pn−1, for n ≥ 1

2. Newton’s method does not converge quadratically for the following problems.
Accelerate the convergence using the Aitken’s ∆2 method. Iterate until |qn−
qn−1| < 10−4.

(a) x2 − 2xe−x + e−2x = 0, [0, 1]

(b) cos(x +
√

2) + x(x/2 +
√

2) = 0, [−2,−1]

(c) x3 − 3x2(2−x) + 3x(4−x)− 8−x = 0, [0, 1]

(d) e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3 = 0, [−1, 0]

3. Consider the function f(x) = e6x + 3(ln 2)2e2x− (ln 8)e4x− (ln 2)3. Use New-
ton’s method with p0 = 0 to approximate a zero of f . Generate terms until
|pn+1 − pn| < 0.0002. Construct the Aitken’s ∆2 sequence {qn}. Is the con-
vergence improved?

4. Repeat Exercise 3 with the constants in f(x) replaced by their four-digit
approximations, that is, with f(x) = e6x + 1.441e2x − 2.079e4x − 0.3330, and
compare the solutions to the results in Exercise 3.

5. (i) Show that the following sequences {pn} converge linearly to p = 0. (ii) How
large must n be before |pn − p| ≤ 5 × 10−2? (iii) Use Aitken’s ∆2 method
to generate a sequence {qn} until |qn − p| ≤ 5× 10−2.

(a) pn =
1
n

, for n ≥ 1 (b) pn =
1
n2

, for n ≥ 1

6. (a) Show that for any positive integer k, the sequence defined by pn = 1/nk

converges linearly to p = 0.

(b) For each pair of integers k and m, determine a number N for which
1/Nk < 10−m.

7. (a) Show that the sequence pn = 10−2n

converges quadratically to zero.
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(b) Show that the sequence pn = 10−nk

does not converge to zero quadrat-
ically, regardless of the size of the exponent k > 1.

8. A sequence {pn} is said to be superlinearly convergent to p if a sequence
{cn} converging to zero exists with

|pn+1 − p| ≤ cn|pn − p|.

(a) Show that if {pn} is superlinearly convergent to p, then {pn} is linearly
convergent to p.

(b) Show that pn = 1/nn is superlinearly convergent to zero but is not
quadratically convergent to zero.


