
C H A P T E R

3 Interpolation and Polynomial Approximation

Introduction
A census of the population of the United States is taken every 10 years. The following
table lists the population, in thousands of people, from 1950 to 2000, and the data are also
represented in the figure.

Year 1950 1960 1970 1980 1990 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(t)

t1950

Year

Po
pu

la
tio

n

1 � 108

2 � 108

3 � 108

1960 1970 1980 1990 2000

In reviewing these data, we might ask whether they could be used to provide a rea-
sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of
this type can be obtained by using a function that fits the given data. This process is called
interpolation and is the subject of this chapter. This population problem is considered
throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of
Section 3.5.
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106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
y

xa b

y � f (x)

y � f (x) � ε

y � f (x) � ε

y � P (x)

Theorem 3.1 (Weierstrass Approximation Theorem)
Suppose that f is defined and continuous on [a, b]. For each ε > 0, there exists a polynomial
P(x), with the property that

|f (x)− P(x)| < ε, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

Karl Weierstrass (1815–1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.
Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor
polynomials are
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3.1 Interpolation and the Lagrange Polynomial 107

P0(x) = 1, P1(x) = 1+ x, P2(x) = 1+ x + x2

2
, P3(x) = 1+ x + x2

2
+ x3

6
,

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
, and P5(x) = 1+ x + x2

2
+ x3

6
+ x4

24
+ x5

120
.

Very little of Weierstrass’s work
was published during his lifetime,
but his lectures, particularly on
the theory of functions, had
significant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from
zero.)

Figure 3.2
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y � P3(x)

y � P4(x)

y � P5(x)

y � P1(x)

y � P0(x)

y � ex

Although better approximations are obtained for f (x) = ex if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to
approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =
n∑

k=0

f (k)(1)

k! (x − 1)k =
n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85
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108 C H A P T E R 3 Interpolation and Polynomial Approximation

For the Taylor polynomials all the information used in the approximation is concentrated
at the single number x0, so these polynomials will generally give inaccurate approximations
as we move away from x0. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to x0. For ordinary computational
purposes it is more efficient to use methods that include information at various points. We
consider this in the remainder of the chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes, but for the derivation of numerical
techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct
points (x0, y0) and (x1, y1) is the same as approximating a function f for which f (x0) = y0

and f (x1) = y1 by means of a first-degree polynomial interpolating, or agreeing with, the
values of f at the given points. Using this polynomial for approximation within the interval
given by the endpoints is called polynomial interpolation.

Define the functions

L0(x) = x − x1

x0 − x1
and L1(x) = x − x0

x1 − x0
.

The linear Lagrange interpolating polynomial through (x0, y0) and (x1, y1) is

P(x) = L0(x)f (x0)+ L1(x)f (x1) = x − x1

x0 − x1
f (x0)+ x − x0

x1 − x0
f (x1).

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1,

which implies that

P(x0) = 1 · f (x0)+ 0 · f (x1) = f (x0) = y0

and

P(x1) = 0 · f (x0)+ 1 · f (x1) = f (x1) = y1.

So P is the unique polynomial of degree at most one that passes through (x0, y0) and
(x1, y1).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (5, 1).

Solution In this case we have

L0(x) = x − 5

2− 5
= −1

3
(x − 5) and L1(x) = x − 2

5− 2
= 1

3
(x − 2),

so

P(x) = −1

3
(x − 5) · 4+ 1

3
(x − 2) · 1 = −4

3
x + 20

3
+ 1

3
x − 2

3
= −x + 6.

The graph of y = P(x) is shown in Figure 3.3.
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3.1 Interpolation and the Lagrange Polynomial 109

Figure 3.3
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To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n+ 1 points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).

(See Figure 3.4.)

Figure 3.4
y

xx0 x1 x2 xn

y � P(x)

y � f (x)

In this case we first construct, for each k = 0, 1, . . . , n, a function Ln,k(x) with the
property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each
i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at
x = xk . Thus

Ln,k(x) = (x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k (when n is even) is shown in Figure 3.5.
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110 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.5

xx0 x1 xk�1 xk xk�1 xn�1 xn

Ln,k(x)

1

. . .. . .

The interpolating polynomial is easily described once the form of Ln,k is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

The interpolation formula named
for Joseph Louis Lagrange
(1736–1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736–1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x)+ · · · + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=
n∏

i=0
i �=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write
products compactly and parallels
the symbol

∑
, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In
nested form they are

L0(x) = (x − 2.75)(x − 4)

(2− 2.5)(2− 4)
= 2

3
(x − 2.75)(x − 4),

L1(x) = (x − 2)(x − 4)

(2.75− 2)(2.75− 4)
= −16

15
(x − 2)(x − 4),

and

L2(x) = (x − 2)(x − 2.75)

(4− 2)(4− 2.5)
= 2

5
(x − 2)(x − 2.75).
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3.1 Interpolation and the Lagrange Polynomial 111

Also, f (x0) = f (2) = 1/2, f (x1) = f (2.75) = 4/11, and f (x2) = f (4) = 1/4, so

P(x) =
2∑

k=0

f (xk)Lk(x)

= 1

3
(x − 2.75)(x − 4)− 64

165
(x − 2)(x − 4)+ 1

10
(x − 2)(x − 2.75)

= 1

22
x2 − 35

88
x + 49

44
.

(b) An approximation to f (3) = 1/3 (see Figure 3.6) is

f (3) ≈ P(3) = 9

22
− 105

88
+ 49

44
= 29

88
≈ 0.32955.

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about x0 = 1 could be used to reasonably approximate f (x) = 1/x
at x = 3.

Figure 3.6
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The interpolating polynomial P of degree less than or equal to 3 is defined in Maple
with

P := x→ interp([2, 11/4, 4], [1/2, 4/11, 1/4], x)

x→ interp

([
2,

11

4
, 4

]
,

[
1

2
,

4

11
,

1

4

]
, x

)

To see the polynomial, enter

P(x)

1

22
x2 − 35

88
x + 49

44

Evaluating P(3) as an approximation to f (3) = 1/3, is found with

evalf(P(3))

0.3295454545
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112 C H A P T E R 3 Interpolation and Polynomial Approximation

The interpolating polynomial can also be defined in Maple using the CurveFitting package
and the call PolynomialInterpolation.

The next step is to calculate a remainder term or bound for the error involved in
approximating a function by an interpolating polynomial.

Theorem 3.3 Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b]. Then,
for each x in [a, b], a number ξ(x) (generally unknown) between x0, x1, . . . , xn, and hence
in (a, b), exists with

f (x) = P(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn), (3.3)

where P(x) is the interpolating polynomial given in Eq. (3.1).There are other ways that the
error term for the Lagrange
polynomial can be expressed, but
this is the most useful form and
the one that most closely agrees
with the standard Taylor
polynomial error form.

Proof Note first that if x = xk , for any k = 0, 1, . . . , n, then f (xk) = P(xk), and choosing
ξ(xk) arbitrarily in (a, b) yields Eq. (3.3).

If x �= xk , for all k = 0, 1, . . . , n, define the function g for t in [a, b] by

g(t) = f (t)− P(t)− [f (x)− P(x)] (t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)

= f (t)− P(t)− [f (x)− P(x)]
n∏

i=0

(t − xi)

(x − xi)
.

Since f ∈ Cn+1[a, b], and P ∈ C∞[a, b], it follows that g ∈ Cn+1[a, b]. For t = xk , we have

g(xk) = f (xk)− P(xk)− [f (x)− P(x)]
n∏

i=0

(xk − xi)

(x − xi)
= 0− [f (x)− P(x)] · 0 = 0.

Moreover,

g(x) = f (x)− P(x)− [f (x)− P(x)]
n∏

i=0

(x − xi)

(x − xi)
= f (x)− P(x)− [f (x)− P(x)] = 0.

Thus g ∈ Cn+1[a, b], and g is zero at the n + 2 distinct numbers x, x0, x1, . . . , xn. By
Generalized Rolle’s Theorem 1.10, there exists a number ξ in (a, b) for which g(n+1)(ξ) = 0.
So

0= g(n+1)(ξ)= f (n+1)(ξ)−P(n+1)(ξ)−[f (x)−P(x)] d
n+1

dtn+1

[
n∏

i=0

(t− xi)

(x− xi)

]
t=ξ

. (3.4)

However P(x) is a polynomial of degree at most n, so the (n+1)st derivative, P(n+1)(x),
is identically zero. Also,

∏n
i=0[(t − xi)/(x − xi)] is a polynomial of degree (n+ 1), so

n∏
i=0

(t − xi)

(x − xi)
=
[

1∏n
i=0(x − xi)

]
tn+1 + (lower-degree terms in t),

and

dn+1

dtn+1

n∏
i=0

(t − xi)

(x − xi)
= (n+ 1)!∏n

i=0(x − xi)
.
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3.1 Interpolation and the Lagrange Polynomial 113

Equation (3.4) now becomes

0 = f (n+1)(ξ)− 0− [f (x)− P(x)] (n+ 1)!∏n
i=0(x − xi)

,

and, upon solving for f (x), we have

f (x) = P(x)+ f
(n+1)(ξ)

(n+ 1)!
n∏

i=0

(x − xi).

The error formula in Theorem 3.3 is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay-
lor polynomial. The nth Taylor polynomial about x0 concentrates all the known information
at x0 and has an error term of the form

f (n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

The Lagrange polynomial of degree n uses information at the distinct numbers x0, x1, . . . ,
xn and, in place of (x − x0)

n, its error formula uses a product of the n + 1 terms (x − x0),
(x − x1), . . . , (x − xn):

f (n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn).

Example 3 In Example 2 we found the second Lagrange polynomial for f (x) = 1/x on [2, 4] using the
nodes x0 = 2, x1 = 2.75, and x2 = 4. Determine the error form for this polynomial, and
the maximum error when the polynomial is used to approximate f (x) for x ε [2, 4].
Solution Because f (x) = x−1, we have

f ′(x) = −x−2, f ′′(x) = 2x−3, and f ′′′(x) = −6x−4.

As a consequence, the second Lagrange polynomial has the error form

f ′′′(ξ(x))
3! (x−x0)(x−x1)(x−x2) = −(ξ(x))−4(x−2)(x−2.75)(x−4), for ξ(x) in (2, 4).

The maximum value of (ξ(x))−4 on the interval is 2−4 = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial

g(x) = (x − 2)(x − 2.75)(x − 4) = x3 − 35

4
x2 + 49

2
x − 22.

Because

Dx

(
x3 − 35

4
x2 + 49

2
x − 22

)
= 3x2 − 35

2
x + 49

2
= 1

2
(3x − 7)(2x − 7),

the critical points occur at

x = 7

3
, with g

(
7

3

)
= 25

108
, and x = 7

2
, with g

(
7

2

)
= − 9

16
.

Hence, the maximum error is

f ′′′(ξ(x))
3! |(x − x0)(x − x1)(x − x2)| ≤ 1

16 · 6
∣∣∣∣− 9

16

∣∣∣∣ = 3

512
≈ 0.00586.
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The next example illustrates how the error formula can be used to prepare a table of
data that will ensure a specified interpolation error within a specified bound.

Example 4 Suppose a table is to be prepared for the function f (x) = ex, for x in [0, 1]. Assume the
number of decimal places to be given per entry is d ≥ 8 and that the difference between
adjacent x-values, the step size, is h. What step size h will ensure that linear interpolation
gives an absolute error of at most 10−6 for all x in [0, 1]?
Solution Let x0, x1, . . . be the numbers at which f is evaluated, x be in [0,1], and suppose
j satisfies xj ≤ x ≤ xj+1. Eq. (3.3) implies that the error in linear interpolation is

|f (x)− P(x)| =
∣∣∣∣f (2)(ξ)2! (x − xj)(x − xj+1)

∣∣∣∣ = |f (2)(ξ)|2
|(x − xj)||(x − xj+1)|.

The step size is h, so xj = jh, xj+1 = (j + 1)h, and

|f (x)− P(x)| ≤ |f
(2)(ξ)|
2! |(x − jh)(x − (j + 1)h)|.

Hence

|f (x)− P(x)| ≤ maxξ∈[0,1] eξ

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|

≤ e

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|.

Consider the function g(x) = (x − jh)(x − (j + 1)h), for jh ≤ x ≤ (j + 1)h. Because

g′(x) = (x − (j + 1)h)+ (x − jh) = 2

(
x − jh− h

2

)
,

the only critical point for g is at x = jh+ h/2, with g(jh+ h/2) = (h/2)2 = h2/4.
Since g(jh) = 0 and g((j + 1)h) = 0, the maximum value of |g′(x)| in [jh, (j + 1)h]

must occur at the critical point which implies that

|f (x)− P(x)| ≤ e

2
max

xj≤x≤xj+1
|g(x)| ≤ e

2
· h2

4
= eh2

8
.

Consequently, to ensure that the the error in linear interpolation is bounded by 10−6, it is
sufficient for h to be chosen so that

eh2

8
≤ 10−6. This implies that h < 1.72× 10−3.

Because n = (1 − 0)/h must be an integer, a reasonable choice for the step size is
h = 0.001.

E X E R C I S E S E T 3.1

1. For the given functions f (x), let x0 = 0, x1 = 0.6, and x2 = 0.9. Construct interpolation polynomials
of degree at most one and at most two to approximate f (0.45), and find the absolute error.

a. f (x) = cos x

b. f (x) = √1+ x

c. f (x) = ln(x + 1)

d. f (x) = tan x
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3.1 Interpolation and the Lagrange Polynomial 115

2. For the given functions f (x), let x0 = 1, x1 = 1.25, and x2 = 1.6. Construct interpolation polynomials
of degree at most one and at most two to approximate f (1.4), and find the absolute error.
a. f (x) = sin πx

b. f (x) = 3
√

x − 1

c. f (x) = log10(3x − 1)

d. f (x) = e2x − x

3. Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.

4. Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.

5. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. The data for Exercise 5 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = x ln x

b. f (x) = x3 + 4.001x2 + 4.002x + 1.101

c. f (x) = x cos x − 2x2 + 3x − 1

d. f (x) = sin(ex − 2)

8. The data for Exercise 6 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = e2x

b. f (x) = x4 − x3 + x2 − x + 1

c. f (x) = x2 cos x − 3x

d. f (x) = ln(ex + 2)

9. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). The coefficient
of x3 in P3(x) is 6. Find y.

10. Let f (x) = √x − x2 and P2(x) be the interpolation polynomial on x0 = 0, x1 and x2 = 1. Find the
largest value of x1 in (0, 1) for which f (0.5)− P2(0.5) = −0.25.

11. Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-
mial approximation to f (1.09). The function being approximated is f (x) = log10(tan x). Use this
knowledge to find a bound for the error in the approximation.

f (1.00) = 0.1924 f (1.05) = 0.2414 f (1.10) = 0.2933 f (1.15) = 0.3492

12. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic
to approximate cos 0.750 using the following values. Find an error bound for the approximation.

cos 0.698 = 0.7661 cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the
actual error and the error bound.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



116 C H A P T E R 3 Interpolation and Polynomial Approximation

13. Construct the Lagrange interpolating polynomials for the following functions, and find a bound for
the absolute error on the interval [x0, xn].
a. f (x) = e2x cos 3x, x0 = 0, x1 = 0.3, x2 = 0.6, n = 2

b. f (x) = sin(ln x), x0 = 2.0, x1 = 2.4, x2 = 2.6, n = 2

c. f (x) = ln x, x0 = 1, x1 = 1.1, x2 = 1.3, x3 = 1.4, n = 3

d. f (x) = cos x + sin x, x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 1.0, n = 3

14. Let f (x) = ex , for 0 ≤ x ≤ 2.

a. Approximate f (0.25) using linear interpolation with x0 = 0 and x1 = 0.5.

b. Approximate f (0.75) using linear interpolation with x0 = 0.5 and x1 = 1.

c. Approximate f (0.25) and f (0.75) by using the second interpolating polynomial with x0 = 0,
x1 = 1, and x2 = 2.

d. Which approximations are better and why?

15. Repeat Exercise 11 using Maple with Digits set to 10.

16. Repeat Exercise 12 using Maple with Digits set to 10.

17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10−6.
Determine a bound for the step size for this table. What choice of step size would you make to ensure
that x = 10 is included in the table?

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use Lagrange interpolation to approximate the population in the years 1940, 1975,
and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28
days after birth. The first sample was reared on young oak leaves, whereas the second sample was
reared on mature leaves from the same tree.

a. Use Lagrange interpolation to approximate the average weight curve for each sample.

b. Find an approximate maximum average weight for each sample by determining the maximum
of the interpolating polynomial.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74
Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

20. In Exercise 26 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where erf(x) is
the normal distribution error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10−4 for erf(xi),
where xi = 0.2i, for i = 0, 1, . . . , 5.

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to erf( 1
3 ).

Which approach seems most feasible?

21. Prove Taylor’s Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let

g(t) = f (t)− P(t)− [f (x)− P(x)] · (t − x0)
n+1

(x − x0)n+1
,

where P is the nth Taylor polynomial, and use the Generalized Rolle’s Theorem 1.10.]
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22. Show that max
xj≤x≤xj+1

|g(x)| = h2/4, where g(x) = (x − jh)(x − (j + 1)h).

23. The Bernstein polynomial of degree n for f ∈ C[0, 1] is given by

Bn(x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
( n

k

)
denotes n!/k!(n − k)!. These polynomials can be used in a constructive proof of the

Weierstrass Approximation Theorem 3.1 (see [Bart]) because lim
n→∞Bn(x) = f (x), for each x ∈ [0, 1].

a. Find B3(x) for the functions
i. f (x) = x ii. f (x) = 1

b. Show that for each k ≤ n, (
n− 1

k − 1

)
=
(

k

n

)(
n

k

)
.

c. Use part (b) and the fact, from (ii) in part (a), that

1 =
n∑

k=0

(
n

k

)
xk(1− x)n−k , for each n,

to show that, for f (x) = x2,

Bn(x) =
(

n− 1

n

)
x2 + 1

n
x.

d. Use part (c) to estimate the value of n necessary for
∣∣Bn(x)− x2

∣∣ ≤ 10−6 to hold for all x in
[0, 1].

3.2 Data Approximation and Neville’s Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now illustrate a practical application of interpolation in
such a situation.

Illustration Table 3.2 lists values of a function f at various points. The approximations to f (1.5)
obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

The most appropriate linear polynomial uses x0 = 1.3 and x1 = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

P1(1.5) = (1.5− 1.6)

(1.3− 1.6)
f (1.3)+ (1.5− 1.3)

(1.6− 1.3)
f (1.6)

= (1.5− 1.6)

(1.3− 1.6)
(0.6200860)+ (1.5− 1.3)

(1.6− 1.3)
(0.4554022) = 0.5102968.

Two polynomials of degree 2 can reasonably be used, one with x0 = 1.3, x1 = 1.6, and
x2 = 1.9, which gives
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P2(1.5) = (1.5− 1.6)(1.5− 1.9)

(1.3− 1.6)(1.3− 1.9)
(0.6200860)+ (1.5− 1.3)(1.5− 1.9)

(1.6− 1.3)(1.6− 1.9)
(0.4554022)

+ (1.5− 1.3)(1.5− 1.6)

(1.9− 1.3)(1.9− 1.6)
(0.2818186) = 0.5112857,

and one with x0 = 1.0, x1 = 1.3, and x2 = 1.6, which gives P̂2(1.5) = 0.5124715.
In the third-degree case, there are also two reasonable choices for the polynomial. One

with x0 = 1.3, x1 = 1.6, x2 = 1.9, and x3 = 2.2, which gives P3(1.5) = 0.5118302.
The second third-degree approximation is obtained with x0 = 1.0, x1 = 1.3, x2 = 1.6,

and x3 = 1.9, which gives P̂3(1.5) = 0.5118127. The fourth-degree Lagrange polynomial
uses all the entries in the table. With x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is P4(1.5) = 0.5118200.

Because P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2 × 10−5 units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

|P1(1.5)− f (1.5)| ≈ 1.53× 10−3,

|P2(1.5)− f (1.5)| ≈ 5.42× 10−4,

|P̂2(1.5)− f (1.5)| ≈ 6.44× 10−4,

|P3(1.5)− f (1.5)| ≈ 2.5× 10−6,

|P̂3(1.5)− f (1.5)| ≈ 1.50× 10−5,

|P4(1.5)− f (1.5)| ≈ 7.7× 10−6.

Although P3(1.5) is the most accurate approximation, if we had no knowledge of the actual
value of f (1.5), we would accept P4(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be
applied here because we have no knowledge of the fourth derivative of f . Unfortunately,
this is generally the case. �

Neville’s Method

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply,
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,
and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4 Let f be a function defined at x0, x1, x2, . . . , xn, and suppose that m1, m2, . . ., mk are k
distinct integers, with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that agrees with
f (x) at the k points xm1 , xm2 , . . . , xmk is denoted Pm1,m2,...,mk (x).

Example 1 Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and f (x) = ex. Determine the
interpolating polynomial denoted P1,2,4(x), and use this polynomial to approximate f (5).
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Solution This is the Lagrange polynomial that agrees with f (x) at x1 = 2, x2 = 3, and
x4 = 6. Hence

P1,2,4(x) = (x − 3)(x − 6)

(2− 3)(2− 6)
e2 + (x − 2)(x − 6)

(3− 2)(3− 6)
e3 + (x − 2)(x − 3)

(6− 2)(6− 3)
e6.

So

f (5) ≈ P(5) = (5− 3)(5− 6)

(2− 3)(2− 6)
e2 + (5− 2)(5− 6)

(3− 2)(3− 6)
e3 + (5− 2)(5− 3)

(6− 2)(6− 3)
e6

=− 1

2
e2 + e3 + 1

2
e6 ≈ 218.105.

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Theorem 3.5 Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct numbers in this set. Then

P(x) = (x − xj)P0,1,...,j−1,j+1,...,k(x)− (x − xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)

is the kth Lagrange polynomial that interpolates f at the k + 1 points x0, x1, . . . , xk .

Proof For ease of notation, let Q ≡ P0,1,...,i−1,i+1,...,k and Q̂ ≡ P0,1,...,j−1,j+1,...,k . Since Q(x)
and Q̂(x) are polynomials of degree k − 1 or less, P(x) is of degree at most k.

First note that Q̂(xi) = f (xi), implies that

P(xi) = (xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
= (xi − xj)

(xi − xj)
f (xi) = f (xi).

Similarly, since Q(xj) = f (xj), we have P(xj) = f (xj).
In addition, if 0 ≤ r ≤ k and r is neither i nor j, then Q(xr) = Q̂(xr) = f (xr). So

P(xr) = (xr − xj)Q̂(xr)− (xr − xi)Q(xr)

xi − xj
= (xi − xj)

(xi − xj)
f (xr) = f (xr).

But, by definition, P0,1,...,k(x) is the unique polynomial of degree at most k that agrees with
f at x0, x1, . . . , xk . Thus, P ≡ P0,1,...,k .

Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

P0,1 = 1

x1 − x0
[(x − x0)P1 − (x − x1)P0], P1,2 = 1

x2 − x1
[(x − x1)P2 − (x − x2)P1],

P0,1,2 = 1

x2 − x0
[(x − x0)P1,2 − (x − x2)P0,1],

and so on. They are generated in the manner shown in Table 3.3, where each row is completed
before the succeeding rows are begun.
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Table 3.3 x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points xi with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.

Eric Harold Neville (1889–1961)
gave this modification of the
Lagrange formula in a paper
published in 1932.[N]

To avoid the multiple subscripts, we let Qi,j(x), for 0 ≤ j ≤ i, denote the interpolating
polynomial of degree j on the (j + 1) numbers xi−j, xi−j+1, . . . , xi−1, xi; that is,

Qi,j = Pi−j,i−j+1,...,i−1,i.

Using this notation provides the Q notation array in Table 3.4.

Table 3.4 x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

Example 2 Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville’s method to
the data by constructing a recursive table of the form shown in Table 3.4.

Table 3.5

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then Q0,0 = f (1.0),
Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and Q4,0 = f (2.2). These are the five
polynomials of degree zero (constants) that approximate f (1.5), and are the same as data
given in Table 3.5.

Calculating the first-degree approximation Q1,1(1.5) gives

Q1,1(1.5) = (x − x0)Q1,0 − (x − x1)Q0,0

x1 − x0

= (1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

1.3− 1.0

= 0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449.

Similarly,

Q2,1(1.5) = (1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

1.6− 1.3
= 0.5102968,

Q3,1(1.5) = 0.5132634, and Q4,1(1.5) = 0.5104270.
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The best linear approximation is expected to be Q2,1 because 1.5 is between x1 = 1.3
and x2 = 1.6.

In a similar manner, approximations using higher-degree polynomials are given by

Q2,2(1.5) = (1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

1.6− 1.0
= 0.5124715,

Q3,2(1.5) = 0.5112857, and Q4,2(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown in
Table 3.6.

Table 3.6 1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, Q4,4, was not sufficiently accurate, another node, x5, could
be selected, and another row added to the table:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose

value at 2.5 is −0.0483838, and the next row of approximations to f (1.5) is

2.5 − 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.
The NumericalAnalysis package in Maple can be used to apply Neville’s method for

the values of x and f (x) = y in Table 3.6. After loading the package we define the data
with

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
Neville’s method using this data gives the approximation at x = 1.5 with the command

p3 := PolynomialInterpolation(xy, method = neville, extrapolate = [1.5])
The output from Maple for this command is

POLYINTERP([[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]],
method = neville, extrapolate = [1.5], INFO)

which isn’t very informative. To display the information, we enter the command

NevilleTable(p3, 1.5)

and Maple returns an array with four rows and four columns. The nonzero entries corre-
sponding to the top four rows of Table 3.6 (with the first column deleted), the zero entries
are simply used to fill up the array.

To add the additional row to the table using the additional data (2.2, 0.1103623) we
use the command
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p3a := AddPoint(p3, [2.2, 0.1103623])
and a new array with all the approximation entries in Table 3.6 is obtained with

NevilleTable(p3a, 1.5)

Example 3 Table 3.7 lists the values of f (x) = ln x accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximatef (2.1) = ln 2.1 by completing the Neville
table.Table 3.7

i xi ln xi

0 2.0 0.6931
1 2.2 0.7885
2 2.3 0.8329

Solution Because x − x0 = 0.1, x − x1 = −0.1, x − x2 = −0.2, and we are given
Q0,0 = 0.6931, Q1,0 = 0.7885, and Q2,0 = 0.8329, we have

Q1,1 = 1

0.2
[(0.1)0.7885− (−0.1)0.6931] = 0.1482

0.2
= 0.7410

and

Q2,1 = 1

0.1
[(−0.1)0.8329− (−0.2)0.7885] = 0.07441

0.1
= 0.7441.

The final approximation we can obtain from this data is

Q2,1 = 1

0.3
[(0.1)0.7441− (−0.2)0.7410] = 0.2276

0.3
= 0.7420.

These values are shown in Table 3.8.

Table 3.8 i xi x − xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931
1 2.2 −0.1 0.7885 0.7410
2 2.3 −0.2 0.8329 0.7441 0.7420

In the preceding example we have f (2.1) = ln 2.1 = 0.7419 to four decimal places,
so the absolute error is

|f (2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4.

However, f ′(x) = 1/x, f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the Lagrange error formula
(3.3) in Theorem 3.3 gives the error bound

|f (2.1)− P2(2.1)| =
∣∣∣∣f ′′′(ξ(2.1))

3! (x − x0)(x − x1)(x − x2)

∣∣∣∣
=
∣∣∣∣ 1

3 (ξ(2.1))3
(0.1)(−0.1)(−0.2)

∣∣∣∣ ≤ 0.002

3(2)3
= 8.3× 10−5.

Notice that the actual error, 10−4, exceeds the error bound, 8.3× 10−5. This apparent
contradiction is a consequence of finite-digit computations. We used four-digit rounding
arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This
caused our actual errors to exceed the theoretical error estimate.

• Remember: You cannot expect more accuracy than the arithmetic provides.

Algorithm 3.1 constructs the entries in Neville’s method by rows.
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ALGORITHM

3.1
Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n+ 1 distinct numbers x0, . . . , xn at the
number x for the function f :

INPUT numbers x, x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as the first column
Q0,0, Q1,0, . . . , Qn,0 of Q.

OUTPUT the table Q with P(x) = Qn,n.

Step 1 For i = 1, 2, . . . , n
for j = 1, 2, . . . , i

set Qi,j = (x − xi−j)Qi, j−1 − (x − xi)Qi−1, j−1

xi − xi−j
.

Step 2 OUTPUT (Q);
STOP.

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qi,i − Qi−1,i−1| < ε

can be used as a stopping criterion, where ε is a prescribed error tolerance. If the inequality is
true, Qi,i is a reasonable approximation to f (x). If the inequality is false, a new interpolation
point, xi+1, is added.

E X E R C I S E S E T 3.2

1. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

3. Use Neville’s method to approximate
√

3 with the following functions and values.

a. f (x) = 3x and the values x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

b. f (x) = √x and the values x0 = 0, x1 = 1, x2 = 2, x3 = 4, and x4 = 5.

c. Compare the accuracy of the approximation in parts (a) and (b).

4. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Use Neville’s
method to find y if P3(1.5) = 0.
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5. Neville’s method is used to approximate f (0.4), giving the following table.

x0 = 0 P0 = 1
x1 = 0.25 P1 = 2 P01 = 2.6
x2 = 0.5 P2 P1,2 P0,1,2

x3 = 0.75 P3 = 8 P2,3 = 2.4 P1,2,3 = 2.96 P0,1,2,3 = 3.016

Determine P2 = f (0.5).

6. Neville’s method is used to approximate f (0.5), giving the following table.

x0 = 0 P0 = 0
x1 = 0.4 P1 = 2.8 P0,1 = 3.5
x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f (0.7).

7. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x + 1, P0,2(x) = x + 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

8. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = x + 1, P1,2(x) = 3x − 1, and P1,2,3(1.5) = 4.

Find P0,1,2,3(1.5).

9. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

10. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was overstated by 2 and f (1) was understated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

11. Construct a sequence of interpolating values yn to f (1 + √10), where f (x) = (1 + x2)−1 for
−5 ≤ x ≤ 5, as follows: For each n = 1, 2, . . . , 10, let h = 10/n and yn = Pn(1+

√
10), where Pn(x)

is the interpolating polynomial for f (x) at the nodes x(n)0 , x(n)1 , . . . , x(n)n and x(n)j = −5 + jh, for each

j = 0, 1, 2, . . . , n. Does the sequence {yn} appear to converge to f (1+√10)?

Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) �= 0 on [a, b] and f has one zero p in [a, b].
Let x0, . . . , xn, be n + 1 distinct numbers in [a, b] with f (xk) = yk , for each k = 0, 1, . . . , n. To
approximate p construct the interpolating polynomial of degree n on the nodes y0, . . . , yn for f −1.
Since yk = f (xk) and 0 = f (p), it follows that f −1(yk) = xk and p = f −1(0). Using iterated
interpolation to approximate f −1(0) is called iterated inverse interpolation.

12. Use iterated inverse interpolation to find an approximation to the solution of x − e−x = 0, using the
data

x 0.3 0.4 0.5 0.6

e−x 0.740818 0.670320 0.606531 0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.
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