Republic of Iraq Ministry of Higher Education & Research

University of Anbar

College of Education for Pure Sciences

Department of Mathematics

Lecture Note On Mathematical Statistics 1 B.Sc. in Mathematics Fourth Stage Assist. Prof. Dr. Feras Shaker Mahmood

Syllabus of Mathematical Statistics 1

- Chapter 1: Additional Topics in Probability
- Special Distribution Functions : The Binomial Probability Distribution, Poisson Probability Distribution, Uniform Probability Distribution, Normal Probability Distribution, Gamma Probability Distribution, Distributions of Functions of random Variables (Transformation technique, Distribution Function technique, Moment generating function technique), Limit Theorems: Chebyshev's Theorem Law of Large Numbers, Central Limit Theorem.
- Chapter 2: Sampling Distributions
- Sampling Distributions Associated with Normal Populations, Distribution of \overline{X} and S^2 , Chi-Square Distribution, Student t-Distribution, F-Distribution, Distributions of Order statistics, Large sample Approximations: The Normal Approximation to the Binomial Distribution, Limiting Distribution: Stochastic Convergence, Limiting of moment generating functions, Theorems on Limiting distributions.
- Chapter 3: Point Estimation
- The Method of Moments, The Method of Maximum Likelihood, Some desirable properties of point estimators, Unbiased Estimators, Sufficiency, Consistency, Efficiency, Minimal Sufficiency and Minimum-Variance Unbiased Estimation, Cramer–Rao procedure to test for efficiency.

References

- الاحصاء الرياضي، امير حنا ، الطبعة الاولى، جامعه الموصل، ١٩٩٥.
- مقدمة في الاحصاء الرياضي، صباح داود سليم، الطبعة الاولى، جامعة البصرة، ١٩٨٩.
- Introduction to Mathematical Statistics, R. V. Hogg and A.T. Craig, (4, 5, 6) edition.
- Introduction to the Theory of Statistics, Alexander M.Mood, Franklin, A. Graybill, MC- Graw Hill, 1974.
- Mathematical Statistics with Applications, K. M. Ramachandran and C. P. Tsokos, 2009.
- Mathematical Statistics with Application, Richard L.Schaffer, Seventh Edition, Thomson Brooks, 2008.
- Probability and mathematical Statistics, Prasanna Sahoo, University of Louisville,, USA, 2008.
- An introduction to Mathematical Statistics and Its Applications, Ricard I. larson and Morris Luois, Fifth edition, Person Education, INC, 2012.
- Probability and Statistical Inference, Robert V. Hogg ,Elliot A. Tanis and ale L. Zimmerman, Ninth Edition, Pearson Education, USA,2015.

Discrete Distributions

Bernoulli	$f(x) = p^{x}(1-p)^{1-x}, x = 0, 1$
0	$M(t) = 1 - p + pe^{t}, \qquad -\infty < t < \infty$
	$\mu = p, \qquad \sigma^2 = p(1-p)$
Binomial b(n, p) 0	$f(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, \qquad x = 0, 1, 2, \dots, n$
	$M(t) = (1 - p + pe^t)^n, \qquad -\infty < t < \infty$
	$\mu = np, \qquad \sigma^2 = np(1-p)$
Geometric	$f(x) = (1-p)^{x-1}p, \qquad x = 1, 2, 3, \dots$
0	$M(t) = \frac{pe^{t}}{1 - (1 - p)e^{t}}, \qquad t < -\ln(1 - p)$
	$\mu = \frac{1}{p}, \qquad \sigma^2 = \frac{1-p}{p^2}$
Hypergeometric $N_1 > 0, N_2 > 0$ $N = N_1 + N_2$	$f(x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{x}}, \qquad x \le n, x \le N_1, n-x \le N_2$
	$\binom{n}{}$
	$\mu = n \left(\frac{N_1}{N} \right), \qquad \sigma^2 = n \left(\frac{N_1}{N} \right) \left(\frac{N_2}{N} \right) \left(\frac{N-n}{N-1} \right)$

Negative Binomial	$f(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, \qquad x = r, r+1, r+2, \dots$					
$r = 1, 2, 3, \dots$	$M(t) = \frac{(pe^t)^r}{[1 - (1 - p)e^t]^r}, \qquad t < -\ln(1 - p)$					
	$\mu = r\left(\frac{1}{p}\right), \qquad \sigma^2 = \frac{r(1-p)}{p^2}$					
Poisson $\lambda > 0$	$f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \qquad x = 0, 1, 2, \dots$					
	$\begin{split} M(t) &= e^{\lambda(e^t - 1)}, -\infty < t < \infty \\ \mu &= \lambda, \sigma^2 = \lambda \end{split}$					
Uniform m > 0	$f(x) = \frac{1}{m}, \qquad x = 1, 2, \dots, m$					
	$\mu = \frac{m+1}{2}, \qquad \sigma^2 = \frac{m^2 - 1}{12}$					

Continuous Distributions

 Beta
 f(x)

 $\alpha > 0$ β
 $\beta > 0$ $\mu =$

 Chi-square
 f(x)

 $\chi^2(r)$ r = 1, 2, ...

 r = 1, 2, ... M(t)

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \qquad 0 < x < 1$$

$$\mu = \frac{\alpha}{\alpha + \beta}, \qquad \sigma^2 = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$$

$$f(x) = \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2 - 1} e^{-x/2}, \qquad 0 < x < \infty$$

$$M(t) = \frac{1}{(1 - 2t)^{r/2}}, \qquad t < \frac{1}{2}$$

$$\mu = r, \qquad \sigma^2 = 2r$$

Exponential $\theta > 0$

$$f(x) = \frac{1}{\theta} e^{-x/\theta}, \qquad 0 \le x < \infty$$
$$M(t) = \frac{1}{1 - \theta t}, \qquad t < \frac{1}{\theta}$$
$$\mu = \theta, \qquad \sigma^2 = \theta^2$$

 $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha - 1} e^{-x/\theta}, \qquad 0 < x < \infty$ Gamma $\alpha > 0$ $M(t) = \frac{1}{(1-\theta t)^{\alpha}}, \quad t < \frac{1}{\theta}$ $\theta > 0$ $\mu = \alpha \theta$, $\sigma^2 = \alpha \theta^2$ $f(x) = \frac{1}{\pi \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, \quad -\infty < x < \infty$ Normal $N(\mu, \sigma^2)$ $-\infty < \mu < \infty$ $M(t) = e^{\mu t + \sigma^2 t^2/2}, \quad -\infty < t < \infty$ $E(X) = \mu$, $Var(X) = \sigma^2$ $\sigma > 0$ $f(x) = \frac{1}{b-a}, \quad a \le x \le b$ Uniform U(a,b) $-\infty < a < b < \infty$ $M(t) = \frac{e^{tb} - e^{ta}}{t(b - a)}$, $t \neq 0$; M(0) = 1 $\mu = \frac{a+b}{2}, \quad \sigma^2 = \frac{(b-a)^2}{12}$

Table X Discrete Distributions								
Probability Distribution and Parameter Values	Probability Mass Function	Moment- Generating Function	Mean $E(X)$	Variance Var(X)	Examples			
Bernoulli 0 $q = 1 - p$	$p^x q^{1-x}, \ x = 0, 1$	$\begin{array}{l} q + p e^t, \\ -\infty < t < \infty \end{array}$	р	pq	Experiment with two possible outcomes, say success and failure, $p = P($ success $)$			
Binomial n = 1, 2, 3, 0	$\binom{n}{x} p^{x} q^{n-x},$ $x = 0, 1, \dots, n$	$(q + pe^t)^n, \\ -\infty < t < \infty$	пр	npq	Number of successes in a sequence of n Bernoulli trials, $p = P($ success $)$			
Geometric 0 $q = 1 - p$	$q^{x-1}p,$ $x = 1, 2, \dots$	$\frac{pe^t}{1-qe^t}$ $t < -\ln(1-p)$	$\frac{1}{p}$	$\frac{q}{p^2}$	The number of trials to obtain the first success in a sequence of Bernoulli trials			
Hypergeometric $x \le n, x \le N_1$ $n - x \le N_2$ $N = N_1 + N_2$ $N_1 > 0, N_2 > 0$	$\frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}$		$n\left(\frac{N_1}{N}\right)$	$n\left(\frac{N_1}{N}\right)\left(\frac{N_2}{N}\right)\left(\frac{N-n}{N-1}\right)$	Selecting <i>n</i> objects at random without replacement from a set composed of two types of objects			
Negative Binomial r = 1, 2, 3, 0	$\binom{x-1}{r-1}p^r q^{x-r},$ $x = r, r+1, \dots$	$\frac{(pe^t)^r}{(1-qe^t)^r},$ $t < -\ln(1-p)$	$\frac{r}{p}$	$\frac{rq}{p^2}$	The number of trials to obtain the <i>r</i> th success in a sequence of Bernoulli trials			
Poisson $\lambda > 0$	$\frac{\lambda^{x}e^{-\lambda}}{x!},$ $x = 0, 1, \dots$	$e^{\lambda(e^t - 1)} \\ -\infty < t < \infty$	λ	λ	Number of events occurring in a unit interval, events are occurring randomly at a mean rate of λ per unit interval			
Uniform $m > 0$	$\frac{1}{m}, \ x=1,2,\ldots,m$		$\frac{m+1}{2}$	$\frac{m^2 - 1}{12}$	Select an integer randomly from 1,2,,m			

Table XI Continuous Distributions							
Probability Distribution and Parameter Values	Probability Density Function	Moment- Generating Function	Mean $E(X)$	Variance Var(X)	Examples		
Beta $\alpha > 0$ $\beta > 0$	$\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1},$ 0 < x < 1		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	$X = X_1/(X_1 + X_2),$ where X_1 and X_2 have independent gamma distributions with same θ		
Chi-square $r = 1, 2, \dots$	$\frac{x^{r/2-1}e^{-x/2}}{\Gamma(r/2)2^{r/2}},$ $0 < x < \infty$	$\frac{1}{(1-2t)^{r/2}}, \ t < \frac{1}{2}$	r	2r	Gamma distribution, $\theta = 2$, $\alpha = r/2$; sum of squares of r independent $N(0,1)$ random variables		
Exponential $\theta > 0$	$\frac{1}{\theta} e^{-x/\theta}, \ 0 \le x < \infty$	$\frac{1}{1-\theta t}, \ t < \frac{1}{\theta}$	θ	θ^2	Waiting time to first arrival when observing a Poisson process with a mean rate of arrivals equal to $\lambda = 1/\theta$		
$Gamma \\ \alpha > 0 \\ \theta > 0$	$\frac{x^{\alpha-1}e^{-x/\theta}}{\Gamma(\alpha)\theta^{\alpha}},\\ 0 < x < \infty$	$\frac{1}{(1-\theta t)^{\alpha}}, \ t < \frac{1}{\theta}$	αθ	$lpha heta^2$	Waiting time to α th arrival when observing a Poisson process with a mean rate of arrivals equal to $\lambda = 1/\theta$		
Normal $-\infty < \mu < \infty$ $\sigma > 0$	$\frac{e^{-(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}, \\ -\infty < x < \infty$	$e^{\mu t + \sigma^2 t^2/2} - \infty < t < \infty$	μ	σ^2	Errors in measurements; heights of children; breaking strengths		
Uniform $-\infty < a < b < \infty$	$\frac{1}{b-a}, \ a \le x \le b$	$\frac{e^{tb} - e^{ta}}{t(b-a)}, t \neq 0$ 1, $t = 0$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	Select a point at random from the interval $[a, b]$		