Republic of Iraq Ministry of Higher Education \& Research

University of Anbar

College of Education for Pure Sciences

Department of Mathematics
محاضر ات الاحصـاء
مدرس المـادة : الاستاذ المسـاعد الدكتور
فر اس شْـاكر محمود

Transformation Method of one dimensional

Theorem. Let X be a continuous random variable with probability density function $\mathrm{f}(\mathrm{X})$. Let $y=T(x)$ be an increasing (or decreasing) functon. Then the density function of the random density function of the random variable $Y=T(x)$ is given by

$$
g(y)=\left|\frac{d x}{d y}\right| f(W(y))
$$

Where $x=W(y)$ is the inverse function of $\mathrm{T}(\mathrm{x})$.
Proof:- suppose $y=T(x)$ is an increasing function. The distribution function $\mathrm{G}(\mathrm{y})$ of Y is given by

$$
\begin{aligned}
G(y) & =P(Y \leq y) \\
& =P(T(x) \leq y) \\
& =P(X \leq W(y)) \\
& =\int_{-\infty}^{W(y)} f(x) d x .
\end{aligned}
$$

Then, differentiating we get the density function of Y, which is

$$
\begin{aligned}
g(y) & =\frac{d G(y)}{d y} \\
& =\frac{d}{d y}\left(\int_{-\infty}^{W(y)} f(x) d x\right) \\
& =f(W(y)) \frac{d W(y)}{d y} \\
& =f(W(y)) \frac{d x}{d y} \quad(\text { since } \quad x=W(y)) .
\end{aligned}
$$

On the other hand, if $y=T(x)$ is a decreasing function, then the distribution function of Y is given by

$$
\begin{aligned}
G(y) & =P(Y \leq y) \\
& =P(T(x) \leq y) \\
& =P(X \geq W(y)) \quad(\text { since } T(x) \text { is decreasing }) \\
& =1-P(X \leq(W(y)) \\
& =1-\int_{-\infty}^{W(y)} f(x) d x
\end{aligned}
$$

As before, differentiating we get the density function of Y, which is

$$
\begin{aligned}
g(y) & =\frac{d G(y)}{d y} \\
& =\frac{d}{d y}\left(1-\int_{-\infty}^{W(y)} f(x) d x\right) \\
& =-f(W(y)) \frac{d W(y)}{d y} \\
& =-f(W(y)) \frac{d x}{d y} \quad(\text { since } \quad x=W(y))
\end{aligned}
$$

Hence, combining both the cases, we get

$$
g(y)=\left|\frac{d x}{d y}\right| f(W(y))
$$

And the proof of the theorem is now complete .

Example: Let $f(x)=\frac{1}{x} \quad x \geq 1$ Find the p.d.f of $Y=x$
Solution: $f(x)=\left\{\begin{array}{cc}\frac{1}{x} & \text { for } x \geq 1 \\ 0 & \text { o.w }\end{array}\right.$
$g(y)=f[\omega(y)] .|J|$
$y=x \Rightarrow x=y$
$f[\omega(y)]=\left\{\begin{array}{ll}\frac{1}{y} \\ 0\end{array} \quad\right.$ for $y \geq 1$
o. w
$|J|=\left|\frac{d x}{d y}\right|=1$
$g(y)= \begin{cases}\frac{1}{y} & \text { for } y \geq 1 \\ 0 & \text { o. } w\end{cases}$
Example: If $x \sim f(x)=2 x$ for $0<x<1$. Find the distribution of $Y=4 x^{2}$.
Solution:-
$f(x)=\left\{\begin{array}{lc}2 x & \text { for } 0<x<1 \\ 0 & o . w\end{array}\right.$
$g(y)=f[\omega(y)] .|J|$
$\left[y=4 x^{2}\right] \div 4$
$\Rightarrow x^{2}=\frac{y}{4}$
$\Rightarrow x=\frac{1}{2} \sqrt{y}$
$f[\omega(y)]=\left\{\begin{array}{cc}2 \frac{\sqrt{y}}{2} & \text { for } 0 \leq y \leq 4 \\ 0 & o . w\end{array}\right.$
$\Rightarrow f[\omega(y)]=\left\{\begin{array}{cc}\sqrt{y} & \text { for } 0 \leq y \leq 4 \\ 0 & \text { o.w }\end{array}\right.$
$|J|=\left|\frac{d x}{d y}\right|=\frac{1}{4 \sqrt{y}}$
$g(y)=\left\{\begin{array}{lc}\frac{\sqrt{y}}{4 \sqrt{y}} & \text { for } 0 \leq y \leq 4 \\ 0 & \text { o.w }\end{array}\right.$
$g(y)=\left\{\begin{array}{ccc}\frac{1}{4} & \text { for } 0 \leq y \leq 4 & g(y) \sim \text { uniform }(0,4) \\ 0 & o . w & \end{array}\right.$
Example: If the p.d.f. of x is $f(x)=2 x e^{-x^{2}} 0<x<\infty$. Determine the p. d. f. of $y=x^{2}$.

Solution:-

$f(x)=\left\{\begin{array}{cc}2 x e^{-x^{2}} & \text { for } 0 \leq x<\infty \\ 0 & \text { o. } w\end{array}\right.$
$g(y)=f[\omega(y)] .|J|$
$y=x^{2} \Rightarrow x=\sqrt{y}$
$f[\omega(y)]=\left\{\begin{array}{cc}2 \sqrt{y} e^{-y} & \text { for } 0 \leq y<\infty \\ 0 & o . w\end{array}\right.$
$|J|=\left|\frac{d x}{d y}\right|=\frac{1}{2 \sqrt{y}}$
$g(y)=\left\{\begin{array}{cc}2 \sqrt{y} e^{-y} \frac{1}{2 \sqrt{y}} & \text { for } 0 \leq y<\infty \\ 0 & o . w\end{array}\right.$
$g(y)=\left\{\begin{array}{lcc}e^{-y} & \text { for } 0 \leq y<\infty \\ 0 & o . w & g(y) \sim \operatorname{Gamma}(1,1)\end{array}\right.$
Example: Let $x \sim$ uniform $(0, \alpha)$. Determine the p. d. f. of $Y=c x+d$.

Solution:-

$f(x)=\left\{\begin{array}{cc}\frac{1}{\alpha} & \text { for } 0 \leq x \leq \alpha \\ 0 & o . w\end{array}\right.$
$g(y)=f[\omega(y)] .|J|$
$y=[c x+d] \div c$
$x=\frac{y-d}{c}$
$f[\omega(y)]=\left\{\begin{array}{cc}\frac{1}{\alpha} & \text { for } d \leq y \leq c \propto+d \\ 0 & o . w\end{array}\right.$
$|J|=\left|\frac{d x}{d y}\right|=\frac{1}{c}$
$g(y)=\left\{\begin{array}{cc}\frac{1}{c \propto} & \text { for } d \leq y \leq c \propto+d \\ 0 & \text { o. } w\end{array}\right.$
Example: Let $x \sim$ uniform $(0,2)$. Find the p.d.f. of $Y=X^{2}$

Solution:-

$f(x)=\left\{\begin{array}{cc}\frac{1}{2} & \text { for } 0 \leq x \leq 2 \\ 0 & \text { o.w }\end{array}\right.$
$y=x^{2} \Rightarrow x=\sqrt{y}$
$g(y)=f[\omega(y)] .|J|$
$f[\omega(y)]=\left\{\begin{array}{cc}\frac{1}{2} & \text { for } 0 \leq y \leq 4 \\ 0 & o . w\end{array}\right.$
$|J|=\left|\frac{d x}{d y}\right|=\frac{1}{2 \sqrt{y}}$
$g(y)=\left\{\begin{array}{cc}\frac{1}{2} \frac{1}{2 \sqrt{y}} & \text { for } 0 \leq y \leq 4 \\ 0 & \text { o. } w\end{array}\right.$
$g(y)=\left\{\begin{array}{cc}\frac{1}{4 \sqrt{y}} & \text { for } 0 \leq y \leq 4 \\ 0 & o . w\end{array}\right.$

