Republic of Iraq Ministry of Higher Education & Research

University of Anbar

College of Education for Pure Sciences

Department of Mathematics

Lecture Note On Mathematical Statistics 1 B.Sc. in Mathematics Fourth Stage Assist. Prof. Dr. Feras Shaker Mahmood

Transformation Methods of Two Dimensional

المحاضرة الرابعة الكورس الاول

When two random variables are involved, many interesting problems can result. In the case of a single-valued inverse, the rule is about the same as that in the one-variable case, with the derivative being replaced by the Jacobian. That is, if X_1 and X_2 are two continuous-type random variables with joint pdf $f(x_1, x_2)$, and if $Y_1 = u_1(X_1, X_2)$, $Y_2 = u_2(X_1, X_2)$ has the single-valued inverse $X_1 = v_1(Y_1, Y_2)$, $X_2 = v_2(Y_1, Y_2)$, then the joint pdf of Y_1 and Y_2 is

$$g(y_1, y_2) = |J| f[v_1(y_1, y_2), v_2(y_1, y_2)], \quad (y_1, y_2) \in S_Y,$$

where the Jacobian J is the determinant

$$J = \begin{bmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{bmatrix}.$$

Of course, we find the support S_Y of Y_1 , Y_2 by considering the mapping of the support S_X of X_1 , X_2 under the transformation $y_1 = u_1(x_1, x_2)$, $y_2 = u_2(x_1, x_2)$. This method of finding the distribution of Y_1 and Y_2 is called the **change-of-variables** technique.

It is often the mapping of the support S_X of X_1, X_2 into that (say, S_Y) of Y_1, Y_2 which causes the biggest challenge. That is, in most cases, it is easy to solve for x_1 and x_2 in terms of y_1 and y_2 , say,

$$x_1 = v_1(y_1, y_2), \qquad x_2 = v_2(y_1, y_2),$$

and then to compute the Jacobian

$$J = \begin{bmatrix} \frac{\partial v_1(y_1, y_2)}{\partial y_1} & \frac{\partial v_1(y_1, y_2)}{\partial y_2} \\ \frac{\partial v_2(y_1, y_2)}{\partial y_1} & \frac{\partial v_2(y_1, y_2)}{\partial y_2} \end{bmatrix}.$$

However, the mapping of $(x_1, x_2) \in S_X$ into $(y_1, y_2) \in S_Y$ can be more difficult. Let us consider two simple examples.

Let X_1, X_2 have the joint pdf

$$f(x_1, x_2) = 2,$$
 $0 < x_1 < x_2 < 1.$

Consider the transformation

$$Y_1 = \frac{X_1}{X_2}, \qquad Y_2 = X_2.$$

It is certainly easy enough to solve for x_1 and x_2 , namely,

$$x_1 = y_1 y_2, \qquad x_2 = y_2,$$

and compute

$$J = \begin{vmatrix} y_2 & y_1 \\ 0 & 1 \end{vmatrix} = y_2.$$

Let X_1 and X_2 be independent random variables, each with pdf

$$f(x) = e^{-x}, \qquad 0 < x < \infty.$$

Hence, their joint pdf is

$$f(x_1)f(x_2) = e^{-x_1 - x_2}, \qquad 0 < x_1 < \infty, \ 0 < x_2 < \infty.$$

Let us consider

$$Y_1 = X_1 - X_2, \qquad Y_2 = X_1 + X_2.$$

Thus,

$$x_1 = \frac{y_1 + y_2}{2}, \qquad x_2 = \frac{y_2 - y_1}{2},$$

with

$$J = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}.$$

The region S_X is depicted . The line segments on the boundary, namely, $x_1 = 0$, $0 < x_2 < \infty$, and $x_2 = 0$, $0 < x_1 < \infty$, map into the line segments $y_1 + y_2 = 0$, $y_2 > y_1$ and $y_1 = y_2$, $y_2 > -y_1$, respectively. These are shown in Figure 5.2-2(b), and the support of S_Y is depicted there. Since the region S_Y is not bounded by horizontal and vertical line segments, Y_1 and Y_2 are dependent.

The joint pdf of Y_1 and Y_2 is

$$g(y_1, y_2) = \frac{1}{2} e^{-y_2}, \quad -y_2 < y_1 < y_2, \quad 0 < y_2 < \infty.$$

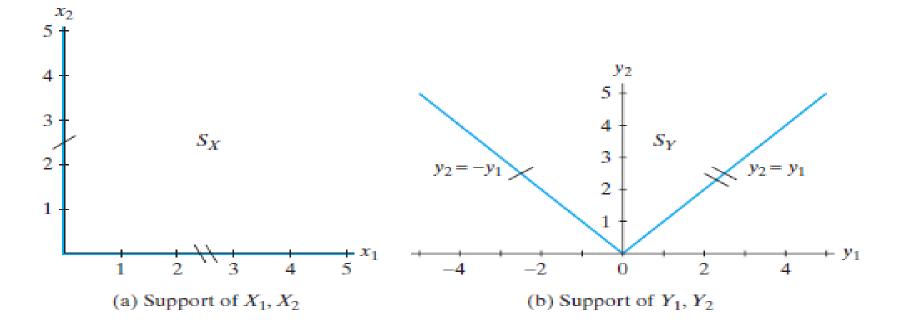


Figure Mapping from x_1, x_2 to y_1, y_2

The probability $P(Y_1 \ge 0, Y_2 \le 4)$ is given by

$$\int_0^4 \int_{y_1}^4 \frac{1}{2} e^{-y_2} dy_2 dy_1 \qquad \text{or} \qquad \int_0^4 \int_0^{y_2} \frac{1}{2} e^{-y_2} dy_1 dy_2.$$

While neither of these integrals is difficult to evaluate, we choose the latter one to obtain

$$\int_0^4 \frac{1}{2} y_2 e^{-y_2} dy_2 = \left[\frac{1}{2} (-y_2) e^{-y_2} - \frac{1}{2} e^{-y_2} \right]_0^4$$
$$= \frac{1}{2} - 2e^{-4} - \frac{1}{2} e^{-4} = \frac{1}{2} \left[1 - 5e^{-4} \right].$$

The marginal pdf of Y_2 is

$$g_2(y_2) = \int_{-y_2}^{y_2} \frac{1}{2} e^{-y_2} dy_1 = y_2 e^{-y_2}, \quad 0 < y_2 < \infty.$$

This is a gamma pdf with shape parameter 2 and scale parameter 1. The pdf of Y_1 is

$$g_1(y_1) = \begin{cases} \int_{-y_1}^{\infty} \frac{1}{2} e^{-y_2} dy_2 = \frac{1}{2} e^{y_1}, & -\infty < y_1 \le 0, \\ \int_{y_1}^{\infty} \frac{1}{2} e^{-y_2} dy_2 = \frac{1}{2} e^{-y_1}, & 0 < y_1 < \infty. \end{cases}$$

That is, the expression for $g_1(y_1)$ depends on the location of y_1 , although this could be written as

$$g_1(y_1) = \frac{1}{2} e^{-|y_1|}, \quad -\infty < y_1 < \infty,$$

which is called a double exponential pdf, or sometimes the Laplace pdf.

Example

Let X_1 and X_2 have independent gamma distributions with parameters α , θ and β , θ , respectively. That is, the joint pdf of X_1 and X_2 is

$$f(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)\theta^{\alpha+\beta}} x_1^{\alpha-1} x_2^{\beta-1} \exp\left(-\frac{x_1 + x_2}{\theta}\right), \ 0 < x_1 < \infty, \ 0 < x_2 < \infty.$$

Consider

$$Y_1 = \frac{X_1}{X_1 + X_2}, \qquad Y_2 = X_1 + X_2,$$

or, equivalently,

$$X_1 = Y_1 Y_2, \qquad X_2 = Y_2 - Y_1 Y_2.$$

The Jacobian is

$$J = \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix} = y_2(1 - y_1) + y_1y_2 = y_2.$$

Thus, the joint pdf $g(y_1, y_2)$ of Y_1 and Y_2 is

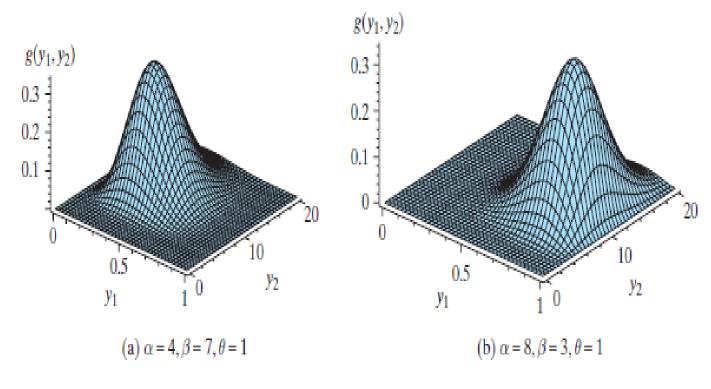
$$g(y_1, y_2) = |y_2| \frac{1}{\Gamma(\alpha)\Gamma(\beta)\theta^{\alpha+\beta}} (y_1 y_2)^{\alpha-1} (y_2 - y_1 y_2)^{\beta-1} e^{-y_2/\theta},$$

where the support is $0 < y_1 < 1$, $0 < y_2 < \infty$, which is the mapping of $0 < x_i < \infty$, i = 1, 2. To see the shape of this joint pdf, $z = g(y_1, y_2)$ is graphed in Figure 5.2-3(a) with $\alpha = 4$, $\beta = 7$, and $\theta = 1$ and in Figure . (b) with $\alpha = 8$, $\beta = 3$, and $\theta = 1$. To find the marginal pdf of Y_1 , we integrate this joint pdf on y_2 . We see that the marginal pdf of Y_1 is

$$g_1(y_1) = \frac{y_1^{\alpha - 1} (1 - y_1)^{\beta - 1}}{\Gamma(\alpha) \Gamma(\beta)} \int_0^\infty \frac{y_2^{\alpha + \beta - 1}}{\theta^{\alpha + \beta}} e^{-y_2/\theta} dy_2.$$

But the integral in this expression is that of a gamma pdf with parameters $\alpha + \beta$ and θ , except for $\Gamma(\alpha + \beta)$ in the denominator; hence, the integral equals $\Gamma(\alpha + \beta)$, and we have

$$g_1(y_1) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y_1^{\alpha - 1} (1 - y_1)^{\beta - 1}, \qquad 0 < y_1 < 1.$$



Joint pdf of $z = g(y_1, y_2)$

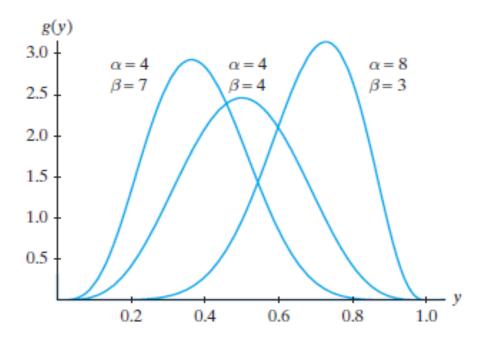


Figure Beta distribution pdfs

We say that Y_1 has a **beta pdf** with parameters α and β .

The next example illustrates the distribution function technique. You will calculate the same results in Exercise 5.2-2, but using the change-of-variable technique.

Example We let

$$F = \frac{U/r_1}{V/r_2},$$

where U and V are independent chi-square variables with r_1 and r_2 degrees of freedom, respectively. Thus, the joint pdf of U and V is

$$g(u,v) = \frac{u^{r_1/2-1}e^{-u/2}}{\Gamma(r_1/2)2^{r_1/2}} \frac{v^{r_2/2-1}e^{-v/2}}{\Gamma(r_2/2)2^{r_2/2}}, \qquad 0 < u < \infty, \ 0 < v < \infty.$$

In this derivation, we let W = F to avoid using f as a symbol for a variable. The cdf $F(w) = P(W \le w)$ of W is

$$F(w) = P\left(\frac{U/r_1}{V/r_2} \le w\right) = P\left(U \le \frac{r_1}{r_2} w V\right)$$
$$= \int_0^\infty \int_0^{(r_1/r_2)wv} g(u, v) du dv.$$

That is,

$$F(w) = \frac{1}{\Gamma(r_1/2)\Gamma(r_2/2)} \int_0^\infty \left[\int_0^{(r_1/r_2)wv} \frac{u^{r_1/2-1}e^{-u/2}}{2^{(r_1+r_2)/2}} du \right] v^{r_2/2-1}e^{-v/2} dv.$$

The pdf of W is the derivative of the cdf; so, applying the fundamental theorem of calculus to the inner integral, exchanging the operations of integration and differentiation (which is permissible in this case), we have

$$\begin{split} f(w) &= F'(w) \\ &= \frac{1}{\Gamma(r_1/2)\Gamma(r_2/2)} \int_0^\infty \frac{[(r_1/r_2)vw]^{r_1/2-1}}{2^{(r_1+r_2)/2}} e^{-(r_1/2r_2)(vw)} \left(\frac{r_1}{r_2}v\right) v^{r_2/2-1} e^{-v/2} \, dv \\ &= \frac{(r_1/r_2)^{r_1/2}w^{r_1/2-1}}{\Gamma(r_1/2)\Gamma(r_2/2)} \int_0^\infty \frac{v^{(r_1+r_2)/2-1}}{2^{(r_1+r_2)/2}} \, e^{-(v/2)[1+(r_1/r_2)w]} \, dv. \end{split}$$

In the integral, we make the change of variable

$$y = \left(1 + \frac{r_1}{r_2}w\right)v$$
, so that $\frac{dv}{dy} = \frac{1}{1 + (r_1/r_2)w}$.

Thus, we have

$$f(w) = \frac{(r_1/r_2)^{r_1/2}\Gamma[(r_1+r_2)/2]w^{r_1/2-1}}{\Gamma(r_1/2)\Gamma(r_2/2)[1+(r_1w/r_2)]^{(r_1+r_2)/2}} \int_0^\infty \frac{y^{(r_1+r_2)/2-1}e^{-y/2}}{\Gamma[(r_1+r_2)/2]2^{(r_1+r_2)/2}} dy$$

$$= \frac{(r_1/r_2)^{r_1/2}\Gamma[(r_1+r_2)/2]w^{r_1/2-1}}{\Gamma(r_1/2)\Gamma(r_2/2)[1+(r_1w/r_2)]^{(r_1+r_2)/2}},$$

the pdf of the W = F distribution with r_1 and r_2 degrees of freedom. Note that the integral in this last expression for f(w) is equal to 1 because the integrand is like a pdf of a chi-square distribution with $r_1 + r_2$ degrees of freedom. Graphs of pdfs for the F distribution

If all n of the distributions are the same, then the collection of n independent and identically distributed random variables, X_1, X_2, \ldots, X_n , is said to be a random sample of size n from that common distribution. If f(x) is the common pmf or pdf of these n random variables, then the joint pmf or pdf is $f(x_1)f(x_2)\cdots f(x_n)$.

Example

Let X_1, X_2, X_3 be a random sample from a distribution with pdf

$$f(x) = e^{-x}, \quad 0 < x < \infty.$$

The joint pdf of these three random variables is

$$f(x_1, x_2, x_3) = (e^{-x_1})(e^{-x_2})(e^{-x_3}) = e^{-x_1 - x_2 - x_3}, \quad 0 < x_i < \infty, \ i = 1, 2, 3.$$

The probability

$$P(0 < X_1 < 1, 2 < X_2 < 4, 3 < X_3 < 7)$$

$$= \left(\int_0^1 e^{-x_1} dx_1 \right) \left(\int_2^4 e^{-x_2} dx_2 \right) \left(\int_3^7 e^{-x_3} dx_3 \right)$$

$$= (1 - e^{-1})(e^{-2} - e^{-4})(e^{-3} - e^{-7}),$$

because of the independence of X_1, X_2, X_3 .