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The first three sections of this chapter presented several techniques for determin-
ing the distribution of a function of random variables with known distributions
Another technique for this purpose is the moment-generating function technique.
[fY = u(Xy,Xy,...,Xy), we have noted that we can find E(Y) by evaluat-

ing E[u(X

E[EI::{XJ.XE,....

et Xy and
1,234,
our-sided ¢

Xy.....Xp)]. Tt is also true that we can find E[e”| by evaluating
A1), We begin with a simple example.

X, be independent random variables with uniform distributions on
et Y = Xy + Xy For example, ¥ could equal the sum when two fair

ice are rolled. The mgfof ¥ 15

My(t)=E (e“’) ; [ef i) ] (e”le“ )



The independence of Xy and X5 implies that
MﬂﬂzEﬁquﬁwj.

In this example, X} and X, have the same pmf, namely,

1
flx)= riE 1,2,3.4,

and thus the same mgf,

1 1 1 1
MT(I]zi'EI-I_EEZI-I_EE}I-I_ZEM

It then follows that My(f) = [My()]* equals

1 2 3 - 3 2 1
—pMy Sy My o I .y
6° T16° T T "0 T T
Note that the coefficient of e is equal to the probability (Y = b); for example,

4/16 = P(Y =5). Thus, we can find the distribution of ¥ by determining its mgf. m



Theorem

1

If Xy.X5,....Xy are independent random variables with respective moment-
generating functions My (f),i = 1,2,3,....n, where —h; <t < h;,i = 1,2,...,n,
for positive numbers h;,i = 1,2,....n, then the moment-generating function of
Y=%1,aiX;is

i
My(t) = | | My (a;f). where —h; <ait <h; i=1.2,....n.

i=1
Proof From Theorem 5.3-1, the mgf of Y is given by
My(t) = E }:”"] —E [Ef{ﬂj X +ﬂ2x2—"'+ﬂnxﬂ;|i|

— E Eﬂ]fx|€ﬂ1f.!lir2 .. ‘fﬂ_ﬂ:xn]

= E[en™ ] E[en 2] g ],
However, since
E(e’xf) = My, (1),
it follows that
E (eﬂ”‘r’) = My, (aif).

Thus, we have

f

My (f) = My, (a10)Mx,(azt) - - - My, (ant) = | | Mx,(ait).

i=1




Corollary
1

If Xi,X5,..., X, are observations of a random sample from a distribution with
moment-generating function M(f), where —h < f < h, then

(a) the moment-generating functionof ¥ =Y, Xjis

n

My(t) =Mty =[M@)", -h<t<h;

i=1
(b) the moment-generating function of X =Y, (1/n)X; is
. N\]" r
M~1) = Ml=1=1M|- . — — <k,
0TG- <3

Proof For (a), letq; = 1,1 =1,2,... ,n, in Theorem 5.4-1. For (b), take a; = 1/n,
i=1,2,....n. 4

The next two examples and the exercises give some important applications
of Theorem ™ 1 and its corollary. Recall that the mgf, once found, uniquely
determines the distribution of the random variable under consideration.
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Let Xy, X>...., X, denote the outcomes of n Bernoulli trials, each with probability
of success p. The mgfof X;.i=1,2,....n, 18

M(t)=q4+pe', —o0 <t <00,

If
f
Y=> X,
i=1
then
"
Mr(t}zn{q+pe’}={q+pe’]"ﬁ —00 < [ < 0.
i=1
Thus, we again see that Y is b(n, p). -

Let X, A5, X5 be the observations of a random sample of size n = 3 from the expo-
nential distribution having mean ¢ and, of course, mgf M(r) = 1/(1 —81),t = 1/8.
The mgfof ¥ = X) + X5 + X5 is

My (f) = [(1 _ 9:}—1]3 =(1—8n3, t<1/8,

which is that of a gamma distribution with parameters ¢ = 3and #. Thus, ¥ has this
distribution. On the other hand, the mgf of X' is

M(f) = [(1 - %)_T = (1 - %)_3: t < 3/8.

Hence. the distribution of X is gamma with the parameters ¢ = 3 and &/3,
respectively. -



Theorem  Let Xy, X3,..., Xy be independent chi-square random variables with ry,r2,....r,
2 degrees of freedom, respectively. Then ¥ = X1+ X5+ -+ X, 88 g2 (rp 4o - -410).

Proof By Theorem 5.4-1 with each a = 1, the mgf of V' is

n
My(f) = [ [ Mx(0) = (1 =201 =272 (1 - 20y 3
i=1
=(1 =202 witht < 1/2,

which is the mgf of a y*(ri4+r2+- -+ ry). Thus, Y is y2(ri£r24+ - 4+ 7).

The next two corollaries combine and extend the results of Theorems 1  and
> and give one interpretation of degrees of freedom.

Corollary Let Zy,Z3....,Z; have standard normal distributions, N(0,1). If these random
5 variables are independent, then W = Z} + Z3 + -- - + Z; has a distribution that is

K (n).

Proof By Theorem 1 |, Z7 is y*(1) fori = 1,2,....n. From Theorem . 2 , with
¥ = W and r; = 1. it follows that W is x*(n). <




Corollary  If X, X3,.... X, are independent and have normal distributions N(u;, crf)ﬁ i =
3 1,2,...,n, respectively, then the distribution of

(Xi - iy
W= Z 2
=1 %
is y%(n).
Proof This follows from Corollary 2 since Z; = (X; — y;)/e; 18 N(0,1), and thus

(Xi - )
ZEZ i 2 i

0;

s y2(1),i=12,....1. <




Theorem

3

If Xy, X7,...,X,; are n mutually independent normal wvariables with means

14, 142, - . ., itp and variances o, o3, . . ., o, respectively, then the linear function

I
Y = Z C;X,‘

has the normal distribution
H n
N(Z Ciflj, Z Cr.-zﬂe-z) .
i=1 i=1
Proof By Theorem 5.4-1, we have, with —oo < ¢if < 00, 0r —00 < I < 00O,
R "
My (1) = [ M, (cit) = [ exp (u,-r:,-t‘ + o7 2)
i=1 i=1

because My, (1) = exp(uit + oft*/2),i=1,2,... n. Thus,

I o)




This is the mgf of a distribution that is

L i
N(z CifLis Z C%CT’-I).
i=1 i=1

Thus, ¥ has this normal distribution.

Example

4

From Theorem 3 |, we observe that the difference of two independent nor-
mally distributed random variables, say, ¥ = X| — X5, has the normal distribution
N(py — pa. of +03).

Let X and X; equal the number of pounds of butterfat produced by two Holstein
cows (one selected at random from those on the Koopman farm and one selected
at random from those on the Vliestra farm, respectively) during the 305-day lac-
tation period following the births of calves. Assume that the distribution of X
is N(693.2,22820) and the distribution of X5 is N(631.7,19205). Moreover, let X
and X, be independent. We shall find P(X, = X5). That is, we shall find the
probability that the butterfat produced by the Koopman farm cow exceeds that
produced by the Vliestra farm cow. (Sketch pdfs on the same graph for these
two normal distributions.) If we let ¥ = X; — X;, then the distribution of Y is
N(693.2 — 631.7,22820 + 19205). Thus,

—61.5 0—6L5
F(xj}xg}=P{r:}u}=P(y 61> 0-ol )

=2
42025 205
= P(Z > —0.30) = 0.6179. -



Theorem

Let Xy, X>2,...,X, be observations of a random sample of size s from the normal
distribution N(z, ). Then the sample mean,

= 1
X=EEX,-,

and the sample variance,

1 + —
52:;1_12(‘“_""}*

are independent and

(n—1S* _ ¥, (Xi—X)
2 2

is x*(n—1).

or o

Proof We are not prepared to prove the independence of X and S at this time
. 50 we accept it without proof here. To prove the second
part, note that

W — ; (-’fs; u)z _5 [(x.- —T}: (X - #}T

i=1

"X X\ (X —p)p
— Z ( ' 4 n( K (5.5-1)
i=1

er e




because the cross-product term is equal to

zi {T_#)Q{IXE —X) — E{fgz_ H) i (X,— —T) — 0.

But ¥Y; = (X; — p)fo, i = 1.2,. . .n, are standardized normal variables that are
independent. Hence. W = > I | P’f is x2(n) by Corollary 5.4-3. Moreover, since X
is W(pe. o2 jr), it follows that

72 _ (T—#)E _ (X — )

or /A1 or 2
is ¥ 2(1) by Theorem 2 - In this notation.
_(m—1)5°

UZ

W + FZ.

However, from the fact that X and $? are independent, it follows that ZZ and S5
are also independent. In the mgf of W, this independence permits us to write

E[e"W:I = F [E-f{{n_lj.slfgz+;—:3|:| _E ,gffﬂ—"-'szfﬂlgﬁfz:l
= E Eifﬂ—l':l."j‘:..-'gl] E I:'Erz:}

Since W and Z? have chi-sgquare distributions, we can substitute their mgfs to
obtain

(1 —20 "2 = g5 (1 — 20172,

Equivalently, we have

2, 2 . 1
E [ertn- 052 | — (1 — 20 (102, F = —.
(1 —20) < 5
This, of course, is the mgf of a ¥ ?(n—1)-variable; accordingly. (rn1 — 1)5?% fo? has that
distribution.
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(Student’s ¢ distribution) Let

z

T = .
U/fr

where Z is a random variable that is N(0, 1), UV is a random variable that is x>(r).
and Z and U are independent. Then T has a f distribution with pdf

' ((r+1)/2) 1
VETT(r/2) (1 + 2/r)tr+1/2°

Proof The joint pdf of Z and U is

— 00 = [ = OO,

f@) =

l --1" 1 i
glz.u) = ——e =72 w2 —00 < T < 00, 0 < u < oC.

V27 r(r/2)2m>
The cdf F(r) = P(T < r)of T is given by

F(t) = P(Zjv"U—,-’rE r)

— P(ZE N

o WS
= f f e(z,u)dz du.
i — 1060

That is,

F 1 (= w] mr E—J-'::.I'.Z d F",l"-" i !-l!,l"-" d
t) = S dz |wr e w2 gy,
= =Fa2 J‘[.] f_x Sz L F u

The pdf of T is the derivative of the cdf; so, applying the fundamental theorem of
calculus to the inner integral (interchanging the derivative and integral operators
is permitted here). we find that




1 o0 E—{J;,-"Zj[rz,-"rj il
1y = F'(t) = — w2 g
() )= = r(rfﬁ}f] 20402 {1 ¢ “

1 00 4 (r+1)/2—1
~rr(ri2) f] 2(r+1)/2

In the integral, make the change of variables

e— W2+ 0y g

du 1
v=(1+/ru, s0 that i o
Thus,
o0 (r+1)/2—1 .
ro = S A 1 1/ y vz gy,
VEFT(rf2y (14 2/r)+002 | Jo o T[(r 4 1)/2]20r+1)02 :

The integral in this last expression for f(f) is equal to 1 because the integrand is
like the pdf of a chi-square distribution with r 4+ 1 degrees of freedom. Hence, the
pdf is

Cl(r+1)/2] 1
NETT(r/2) (1 42 r)r+1z”

—00 = [ = o0,

()=
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Let the distribution of T be ¢(11). Then
fpos(11) = 1.796 and — fnps(11) = —1.796.
Thus,
P(—1.796 = T = 1.796) = 0.90.

We can also find values of the cdf such as

P(T = 2.201) = 0.975 and P(T = —1.363) = 0.10. .

We can use the results of Corollary 3 and Theorems 3 and 2 | to con-
struct an important T random variable. Given a random sample X, X5,.... X, from
a normal distribution, N(u.o?). let

X - —1)§?
7= F and U= u
o/ N ol

Then the distribution of Z is N(0,1) by Corollary 3 . Theorem 3 tells us that
the distribution of U is x*(n—1) and that Z and U are independent. Thus,

X—u
o /1 _ X—p

~ S/vn
\l—(ﬂ =2 -

T = (5.5-2)




