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Central limit theorem 

1- Let      be a random sample from a beta distribution with     and 

    find the joint pdf of            . 

2- Let       a random sample from an exponential population with 

parameter    . 

Let       be the ordered random variables . Show that the sampling 

distribution of    and    are given by  

 ( ) {
 

 
  
 
  
            

                     

 } 

3-  Let        be a random sample with 

  ( )                .  

Prove that          and      are indep.   . 

 

Limiting Distribution  

1-  Convergence in Probability  

In this section we formalize a way of saying that a sequence of random 

variables is getting "close" to another random variable.  

We will use this concept throughout the lecture. 

Definition:  let *  + be a sequence of random variable and let X be a 

random variable defined on a sample space   . 

We say that    converges in probability to X if for all      
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Or equivalently   , 
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If so , we write  

  
 
 
    



One way of showing convergence in probability is to use Chebyshev's 

Theorem  

 Chebyshev's Theorem: 

Let the random variable X have a mean a meat   and standard deviation 

   . 

 Then for      a constant . 

 *|    |    +    
 

  
 

Example: let    be a mean of r.s of size n of distribution having this 

mean      varianse     then    

  
 
  
  

solution:   *|    |   +    
 

  
                 

Since     (  )         (  )  
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By chebyshev's Theorem  

   
  
 
    



Example:       ( ) show that   
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Theorem:  ( )
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Proof:  *|    |   +  | | 
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