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A factorization theorem: The characterization of a sufficient statistic in terms of the 

conditional distribution of the data given the statistic can be difficult to work with.The 

following factorization theorem provides a convenient means of identifying sufficient 

statistics. 

Theorem: A necessary and sufficient condition for the statistic T(X1,...,Xn) to be 

sufficient for a parameter θ is that the joint probability function (density function or 

frequency function) factors in the form  f(x1,...,xn|θ) = g[T(x1,...,xn),θ]h(x1,...,xn). 

Proof We shall only consider the case where the Xi’s are discrete random variables. 

(The ideas for the proof of the continuous case is similar but is technically more 

challenging.) 

Sufficient condition 

First suppose the frequency function (or pmf) factors as 

f(x1,...,xn|θ)= g[T(x1,...,xn),θ]h(x1,...,xn). 

Writing X = (X1,...,Xn) and x = (x1,...,xn), we have P(T = t) = ∑         x:T(x)=t 

= g(t,θ)  ∑      x:T(x)=t. Consequently, 

P(X = x,T = t) 

 P(X = x|T = t) =  

                                       P(T = t) 

                                                       h(x) 

                         = 

                                        ∑           h(x)
 

This implies that P(X = x|T = t) does not depend on θ and we conclude that T(X) is 

sufficient for θ. 

Necessary condition 

Now suppose that T(X) is sufficient for θ. Then P(X = x|T = t) does not depend on θ. 

 Let g(t,θ) = P(T = t|θ), h(x) = P(X = x|T = t).Then we have 

P(X = x|θ) = P(T = t|θ)P(X = x|T = t)= g(t,θ)h(x). 

This completes the proof of the factorization theorem. 



 

 

Example: 

Consider a sequence of Bernoulli random variables X1,...,Xn where  

P(Xi = xi) = θ
xi
(1 − θ)

1−xi
, xi = 0,1. Then writing x = (x1,...,xn), 

 

where 

, 

We conclude from the factorization theorem that  is sufficient for θ. 

Example: 

Consider a random sample X = (X1,...,Xn) from N(µ,σ
2
) where µ and σ

2 
are both 

unknown. Then 

 

The rhs is only a function of  and . 

 



 

It follows from the factorization theorem 

that  and  are the sufficient statistics forµ andσ
2
. 

, 

is an example of a 2-dimensional sufficient statistic. 

Some remarks If T(X1,...,Xn) is sufficient for the parameter θ, then the M. L. E.  must 

be a function only of T. Likewise in the Bayesian approach, the posterior distribution of 

θ given the data X = (X1,...,Xn) is equal to the posterior distribution of θ given only 

T(X). 

F. distribution 

We have motivated the t-distribution in part by its application to problems in which 

there is comparative sampling (i.e., a comparison between two sample means). For 

example, some of our examples in future chapters will take a more formal approach, 

chemical engineer collects data on two catalysts, biologist collects data on two growth 

media, or chemist gathers data on two methods of coating material to inhibit corrosion. 

While it is of interest to let sample information shed light on two population means, it is 

often the case that a comparison of variability is equally important, if not more so. The 

F-distribution finds enormous application in comparing sample variances. Applications 

of the F-distribution are found in problems involving two or more samples. The statistic 

F is defined to be the ratio of two independent chi-squared random variables, each 

divided by its number of degrees of freedom. Hence, we can write  

where U and V are independent random variables having chi-squared distributions with 

v1 and v2 degrees of freedom, respectively. We shall now state the sampling distribution 

of F. 

Theorem 1: 

 

 

 

 

 



 

We will make considerable use of the random variable F in future chapters. However, 

the density function will not be used and is given only for completeness. The curve of 

the F-distribution depends not only on the two parameters v1 and v2 but also on the order 

in which we state them. Once these two values are given, we can identify the curve. 

Typical F-distributions are shown in Figure 1.  

Let fα be the f-value above which we find an area equal to α. This is illustrated by the 

shaded region in Figure 2. Table A.6 gives values of fα only for α = 0.05 and α = 0.01 

for various combinations of the degrees of freedom v1 and v2. Hence, the f-value with 6 

and 10 degrees of freedom, leaving an area of 0.05 to the right, is f0.05 = 3.22. By means 

of the following theorem, Table A.6 can also be used to find values of f0.95 and f0.99. The 

proof is left for the reader. 



 

Theorem2: 

 

 

 

 

Thus, the f-value with 6 and 10 degrees of freedom, leaving an 

area of 0.95 to the right, is 

. 

The F-Distribution with Two Sample Variances 

Suppose that random samples of size n1 and n2 are selected from 

two normal populations with variances , respectively. From 

Theorem 8.4, we know that 

 

are random variables having chi-squared distributions with v1 = 

n1 − 1 and v2 = n2−1 degrees of freedom. Furthermore, since the 

samples are selected at random, we are dealing with independent 

random variables. Then, using Theorem 1 with , 

we obtain the following result. 

Theorem 3 : 

 

 

If  are the variances of independent random samples of size n1 and n2 

taken from normal populations with variances , respectively, then 

 

has an F-distribution with v1 = n1 -1 and v2 = n2 -1 degrees of freedom. 



 

 

 

What Is the F-Distribution Used For? 

We answered this question, in part, at the beginning of this 

section. The F distribution is used in two-sample situations to 

draw inferences about the population variances. This involves 

the application of Theorem 3 . However, the 

F-distribution can also be applied to many other types of 

problems involving sam- ple variances. In fact, the F-

distribution is called the variance ratio distribution. As an 

illustration, consider Case Study 8.2, in which two paints, A and 

B, were compared with regard to mean drying time. The normal 

distribution applies nicely (assuming that σA and σB are known). 

However, suppose that there are three types of paints to 

compare, say A, B, and C. We wish to determine if the 

population means are equivalent. Suppose that important 

summary information from the experiment is as follows: 

 

Paint Sample Mean Sample Variance Sample Size 

A X
¯
A = 4.5 s

2
A = 0.20 10 

B X
¯
B = 5.5 s

2
B = 0.14 10 

C X
¯
C = 6.5 s

2
C = 0.11 10 

 

The problem centers around whether or not the sample averages 

(¯xA, ¯xB, ¯xC) are far enough apart. The implication of “far 

enough apart” is very important. It would seem reasonable that 

if the variability between sample averages is larger than what 

one would expect by chance, the data do not support the 



 

conclusion that μA = μB = μC. Whether these sample averages 

could have occurred by chance depends on the variability within 

samples, as quantified by s
2
A, s

2
B, and s

2
C. The notion of the 

important components of variability is best seen through some 

simple graphics. Consider the plot of raw data from samples A, 

B, and C, shown in Figure 8.13. These data could easily have 

generated the above summary information. It appears evident 

that the data came from distributions with different population 

means, although there is some overlap between the samples. An 

analysis that involves all of the data would attempt to determine 

if the variability between the sample averages and the variability 

within the samples could have occurred jointly if in fact the 

populations have a common mean. Notice that the key to this 

analysis centers around the two following sources of variability. 

Variability within samples (between observations in distinct 

samples) 

Variability between samples (between sample averages) 

Clearly, if the variability in (1) is considerably larger than that in 

(2), there will be considerable overlap in the sample data, a 

signal that the data could all have come 

from a common distribution. An example is found in the data set 

shown in Figure 4. On the other hand, it is very unlikely that 

data from distributions with a common mean could have 

variability between sample averages that is considerably larger 

than the variability within samples. The sources of variability in 

(1) and (2) above generate important ratios of sample variances, 

and ratios are used in conjunction with the F-distribution. The 

general procedure involved is called analysis of variance. It is 

interesting that in the paint example described here, we are 

dealing with inferences on three population means, but two 

sources of variability are used. We will not supply details here, 

but in Chapters 13 through 15 we make extensive use of 



 

analysis of variance, and, of course, the F-distribution plays an 

important role. 

 


