Republic of Iraq Ministry of Higher Education \& Research

University of Anbar

College of Education for Pure Sciences

Department of Mathematics
محاضر ات الاحصـاء
مدرس المـادة : الاستاذ المسـاعد الدكثور
فر اس شـاكر محمود

The Distribution of S^{2}

Theorem:- Let $\mathrm{X}_{1} . \mathrm{X}_{2} \ldots . \mathrm{X}_{\mathrm{n}}$ be observations of a random sample of size n from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ Then the sample mean .

$$
\overline{\mathrm{X}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}},
$$

and the sample variance

$$
S^{2}=\frac{1}{\mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}
$$

are independent and

$$
\frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\sigma^{2}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\sigma^{2}}
$$

Proof :- we are not prepared to prove the independence of $\overline{\mathrm{X}}$ and S^{2} at this time, so we accept it without proof here. To prove the second part . note that
$\mathrm{w}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{X}_{\mathrm{i}}-\mu}{\sigma}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)+(\overline{\mathrm{X}}-\mu)}{\sigma}\right]^{2}$
$=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{X}}}{\sigma}\right)^{2}+\frac{\mathrm{n}(\overline{\mathrm{X}}-\mu)^{2}}{\sigma^{2}}$
because the cross-product term is equal to

$$
2 \sum_{1}^{\mathrm{n}} \frac{(\overline{\mathrm{X}}-\mu)\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)}{\sigma^{2}}=\frac{2(\overline{\mathrm{X}}-\mu)}{\sigma^{2}} \sum_{1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)=0
$$

But $Y_{i}=\frac{(\overline{\mathrm{X}}-\mu)}{\sigma^{2}}, i=1.2 .3 \ldots . n$
are standardized normal variables that are independent. Hence $w=\sum_{1}^{n} Y_{i}^{2}$ is $\chi^{2}(\mathrm{n})$ by corollary 5.4-3 Moreover since \bar{X} is $N\left(\mu, \frac{\sigma^{2}}{n}\right)$ it follows that
$Z^{2}=\left(\frac{\overline{\mathrm{X}}-\mu}{\sigma / \sqrt{n}}\right)^{2}=\frac{\mathrm{n}(\overline{\mathrm{X}}-\mu)^{2}}{\sigma^{2}}$
is $\chi^{2}(1)$ by Theorem 3.3-2 In this notation. Equation 5.5 -1becomes

$$
\mathrm{w}=\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma^{2}}+\mathrm{z}^{2}
$$

However from the face that $\overline{\mathrm{X}}$ and S^{2} are independent it follows that Z^{2} and S^{2} are also independent In the mgf of W this independence permits us to write
$E\left[e^{t w}\right]=E\left[e^{t\left(\frac{(n-1) s^{2}}{\sigma^{2}}+z^{2}\right)}\right]=E\left[e^{t\left(\frac{(n-1))^{2}}{\sigma^{2}}\right)} e^{t Z^{2}}\right]=E\left[e^{t\left(\frac{(n-1))^{2}}{\sigma^{2}}\right)}\right] E\left[e^{t Z^{2}}\right]$.
Since W and z^{2} have chi-square distribution we can substitute their mgfs
to obtain $(1-2 \mathrm{t})^{-\mathrm{n} / 2}=\mathrm{E}\left[\mathrm{e}^{\mathrm{t}\left(\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma^{2}}\right)}\right](1-2 \mathrm{t})^{-1 / 2}$
Equivalently we have $E\left[e^{t\left(\frac{(n-1) s^{2}}{\sigma^{2}}\right)}\right]=(1-2 t)^{-(n-1) / 2} \quad t<1 / 2$
This of course is the mgf of $\chi^{2}(n-1)$ variable accordingly $\left(\frac{(n-1) s^{2}}{\sigma^{2}}\right.$ has that distribution
Example:- If $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ Show that $Z=\left[\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\right] \sim N(0,1)$

Solution:

Since $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
$f(\bar{X})=\frac{1}{\frac{\sigma^{2}}{n} \sqrt{2 \pi}} e^{\frac{-1}{2}\left(\frac{(\bar{X}-\mu)^{2}}{\frac{\sigma^{2}}{n}}\right)}-\infty<\bar{X}<\infty$
$f(\bar{X})=\frac{\sqrt{n}}{\sigma \sqrt{2 \pi}} e^{\frac{-1}{2}\left(\frac{(\bar{X}-\mu)^{2}}{\frac{-}{\sqrt{n}}}\right)}-\infty<\overline{\mathrm{X}}<\infty$
$\mathrm{Z}=\frac{\overline{\mathrm{x}}-\mu}{\frac{\sigma}{\sqrt{n}}}$
$\mathrm{M}_{\mathrm{z}}(\mathrm{t})=\mathrm{E}\left(\mathrm{e}^{\mathrm{tz}}\right)$
$=E\left(e^{t\left(\frac{\bar{x}-\mu}{\frac{\mu}{\sqrt{n}}}\right)}\right)$
$E\left(e^{\mathrm{t}\left(\frac{\bar{X}-\mu}{\sqrt{n}}\right)}\right)=\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{t}\left(\frac{\overline{\mathrm{X}}-\mu}{\frac{\mu}{\sqrt{n}}}\right)} \cdot \frac{\sqrt{n}}{\sigma \sqrt{2 \pi}} \mathrm{e}^{\frac{-1}{2}\left(\frac{(\overline{\mathrm{X}}-\mu)^{2}}{\frac{\sigma^{2}}{n}}\right)} d \bar{X}$
let $\left[y=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\right] \rightarrow \frac{\sigma y}{\sqrt{n}}=\bar{X}-\mu$
$\overline{\mathrm{X}}=\frac{\sigma \mathrm{y}}{\sqrt{\mathrm{n}}}+\mu \rightarrow \mathrm{d} \overline{\mathrm{X}}=\frac{\sigma}{\sqrt{\mathrm{n}}} \mathrm{dy}$
$E\left(e^{\mathrm{tz}}\right)=\frac{\sqrt{n}}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{t}\left(\frac{\overline{\mathrm{x}}-\mu}{\frac{\mu}{\sqrt{n}}}\right)} \cdot \mathrm{e}^{\frac{-1}{2}\left(\frac{(\overline{\mathrm{x}}-\mu)^{2}}{\frac{\sigma^{2}}{n}}\right)} d \bar{X}$
$\mathrm{E}\left(\mathrm{e}^{\mathrm{tz}}\right)=\frac{\sqrt{n}}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{ty}} \mathrm{e}^{\frac{-1}{2} \mathrm{y}} \frac{\sigma}{\sqrt{\mathrm{n}}} \mathrm{dy}$
$E\left(e^{\mathrm{tz}}\right)=\frac{\sigma}{\sqrt{n}} \frac{\sqrt{n}}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{\mathrm{y}^{2}-2 \mathrm{ty}}{2}\right)} \mathrm{dy}$
$E\left(e^{\mathrm{tz}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{\mathrm{y}^{2}-2 \mathrm{t}+\mathrm{t}^{2}-\mathrm{t}^{2}}{2}\right.} d y$
$E\left(e^{\mathrm{tz}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{\mathrm{y}^{2}-2 t+\mathrm{t}^{2}}{2}\right)-\frac{\mathrm{t}^{2}}{2}} d y$
$E\left(e^{\mathrm{tz} z}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{(\mathrm{y}-\mathrm{t})^{2}}{2}} \mathrm{e}^{\frac{\mathrm{t}^{2}}{2}} d y$
$E\left(e^{t z}\right)=\frac{\mathrm{e}^{\mathrm{t}^{2}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{(\mathrm{y}-\mathrm{t})^{2}}{2}\right)} \mathrm{dy}$
Let $\mathrm{h}=\mathrm{y}-\mathrm{t} \rightarrow \mathrm{dh}=\mathrm{dy}$
$\mathrm{E}\left(\mathrm{e}^{\mathrm{tz}}\right)=\frac{\mathrm{e}^{\frac{\mathrm{t}^{2}}{2}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\frac{-1}{2} \mathrm{~h}^{2}} \mathrm{dh}$
$\mathrm{E}\left(\mathrm{e}^{\mathrm{tz}}\right)=\mathrm{e}^{\frac{\mathrm{t}^{2}}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\frac{-1}{2} \mathrm{~h}^{2}} \mathrm{dh} \rightarrow \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\frac{-1}{2} \mathrm{~h}^{2}}=1 \sim \mathrm{~N}(0,1)$
$E\left(e^{t z}\right)=e^{t^{\frac{t^{2}}{2}}} \sim N(0,1)$
$\mathrm{Z}=\left[\frac{\overline{\mathrm{X}}-\mu}{\frac{\sigma}{\sqrt{n}}}\right] \sim \mathrm{N}(0,1)$

Student t-distribution:-

Theorem :-Let $T=\frac{Z}{\sqrt{\frac{U}{r}}}$
where Z is a random variable that is $\mathrm{N}(0,1), \mathrm{U}$ is a random variable that is $\mathrm{X}^{2}(\mathrm{r})$ and Z and U are independent. Then T has a t distribution with pdf
$\mathrm{f}(\mathrm{t})=\frac{\Gamma\left(\frac{\mathrm{r}+1}{2}\right)}{\sqrt{\pi r}\left(\frac{\mathrm{r}}{2}\right)} \frac{1}{\left(1+\frac{\mathrm{t}^{2}}{\mathrm{r}}\right)^{\frac{r+1}{2}}}-\infty<\mathrm{t}<\infty$
proof :- The joint pdf of Z and U is
$\mathrm{g}(\mathrm{z}, \mathrm{u})=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{\mathrm{z}^{2}}{2}} \frac{1}{\Gamma\left(\frac{r}{2}\right)^{\frac{r}{2}}} \mathrm{u}^{\frac{\mathrm{r}}{(2-1)}} \mathrm{e}^{-\frac{\mathrm{u}}{2}}$
the $\operatorname{cdf} \mathrm{F}(\mathrm{t})=\mathrm{P}(\mathrm{T} \leq \mathrm{t})$ of Tis given by
$F(t)=P\left(\frac{z}{\sqrt{\frac{v}{r}}} \leq t\right)$
$=\mathrm{P}\left(\mathrm{Z} \leq \sqrt{\frac{\mathrm{v}}{\mathrm{rt}}}\right)$

the pdf of T is the derivative of the cdf, so, applying the fundamental theorem of calculus to the inner integral
we find that $f(t)=F^{\prime}(t)=\frac{1}{\sqrt{\pi} \Gamma\left(\frac{r}{2}\right)} \int_{0}^{\infty} \frac{e^{-\left(\frac{u}{2}\right)\left(\frac{t^{2}}{r}\right)}}{2^{(r+1) / 2}} \sqrt{\frac{u}{r}} u^{\frac{r}{2}-1} e^{-u / 2} d u$
$=\frac{1}{\sqrt{\pi} \Gamma\left(\frac{\mathrm{r}}{2}\right)} \int_{0}^{\infty} \frac{\mathrm{u}^{\frac{\mathrm{r}+1}{2}-1}}{2^{(\mathrm{r}+1) / 2}} \mathrm{e}^{-\left(\frac{\mathrm{u}}{2}\right)\left(\frac{1+\mathrm{t}^{2}}{\mathrm{r}}\right)} \mathrm{du}$
In the integral, make the change of variables $y=\left(1+t^{2} / r\right) u$, so that
$\frac{\mathrm{du}}{\mathrm{dy}}=\frac{1}{1+\mathrm{t}^{2} / \mathrm{r}}$
Thus, $\mathrm{f}(\mathrm{t})=\frac{\Gamma[(\mathrm{r}+1)] / 2}{\sqrt{\pi r} \Gamma\left(\frac{\mathrm{r}}{2}\right)}\left[\frac{1}{\left(1+\mathrm{t}^{2} / \mathrm{r}\right)^{(\mathrm{r}+1) / 2}}\right] \int_{0}^{\infty} \frac{\mathrm{y}^{(\mathrm{r}+1) /(2-1)}}{\Gamma\left[\frac{\mathrm{r}^{\mathrm{r} 1}}{2}\right] 2^{(\mathrm{r}+1) / 2}} \mathrm{e}^{-\mathrm{y} / 2} \mathrm{dy}$
The integral in this last expression for $f(t)$ is equal to 1 because the integrand is like the pdf of a chi-square distribution with $\mathrm{r}+1$ degrees of freedom. Hence, the pdf is

$$
\mathrm{f}(\mathrm{t})=\frac{\Gamma\left[{ }^{(\mathrm{r}+1)} / 2\right]}{\sqrt{\pi r} \Gamma\left(\frac{\mathrm{r}}{2}\right)} \frac{1}{\left(1+\frac{\mathrm{t}^{2}}{\mathrm{r}}\right)^{\frac{\mathrm{r}+1}{2}}}-\infty<\mathrm{t}<\infty
$$

Example: if $\mathrm{T} \sim \mathrm{t}(10)$ then what is the probability that T is at least 2.228 ?

Solution:

$\mathrm{P}(\mathrm{T} \geq 2 \cdot 228)=1-\mathrm{P}(\mathrm{T}<2 \cdot 228)$
$=1-0.975$ (from t- table)
$=0 \cdot 025$

