
1 
 

Methods of Estimation 

  

     
  

     
  
 

  

  
Republic of Iraq Ministry of Higher 

Education & Research 

 University of Anbar  

College of Education for Pure Sciences  

Department of Mathematics 

     
  

  

    

  

    

  
     

  

  
  

      

  

  

  

  

  

  

  

 1محاضرات الاحصاء 

مدرس المادة : الاستاذ المساعد الدكتور 

 فراس شاكر محمود

  



2 
 

 The Distribution of     

Theorem:- Let           be observations of a random sample of size n 

from the normal distribution N(    ) Then the sample mean . 
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and the sample variance  
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Proof :- we are not prepared to prove the independence of  ̅ and    at this 

time, so we accept it without proof here . To prove the second part . note 

that  
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because the cross-product term is equal to 
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But     
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are standardized normal variables that are independent. Hence   ∑   
  

  

is       by corollary 5.4-3 Moreover  

since  ̅ is     
  

 
  it follows that  

   (
 ̅  

  √ 
)
 

=
   ̅    

  
 

is       by Theorem 3.3-2 In this notation. Equation 5.5-1becomes  

  
       

  
    

 However from the face that  ̅  and    are independent  it follows that    

and     are also independent  In the mgf of W  this independence permits 

us to write  

 [   ] =E[ 
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] . 

Since W and    have chi-square distribution  we can substitute their mgfs 
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to obtain        
  

 ⁄  = E[ 
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Equivalently we have     E[ 
  

       

   
] =      

      
 ⁄    t<1/2 

This of course  is the mgf of a        variable  accordingly 
       

  
 has 

that distribution  

Example:- If  ̅  (  
  

 
) Show that Z=*
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Solution: 

Since  ̅  (  
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Let h=y-t        
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Student t-distribution:- 

Theorem :-Let     
 

√
 

 

  

where Z is a random variable that is         U is a random variable that is 

  (r) and Z and U are independent . Then T has a t distribution with pdf  
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proof :- The joint pdf of Z and U is  

g(z,u)=
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the cdf F(t)=P(T    of Tis given by  

F(t)=P(
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the pdf of T is the derivative of the cdf , so, applying the fundamental 

theorem of calculus to the inner integral  

we find that          ́  
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In the integral, make the change of variables y=(1+       , so that  
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The integral in this last expression for f(t) is equal to 1 because the 

integrand is like the pdf of a chi-square distribution with r+1 degrees of 

freedom . Hence , the pdf is  
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Example:if T ~t(10) then what is the probability that T is at least 2.228? 

Solution: 

                        

            (from t- table) 

        


