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Theorem:- Let X;.X, .... X, be observations of a random sample of size n
from the normal distribution N(u, 6*) Then the sample mean .
< 1
X= n ?=1Xil
and the sample variance
S2 = — 30, (X; — X)2

n— 1
are independent and
(n—1)S*  YL,(X; —X)?
02 B 02
Proof :- we are not prepared to prove the independence of X and S? at this
time, so we accept it without proof here . To prove the second part . note

that
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because the cross-product term is equal to
X-wWXi—X)_2(X-1) %%
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are standardized normal variables that are independent. Hence w = Y1 Y?
is x%(n) by corollary 5.4-3 Moreover
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since X is N(y, ) it follows that

72 (X—u)zzn(i—u)z

o/Vn o2
is x%(1) by Theorem 3.3-2 In this notation. Equation 5.5-1becomes
n—1)s?
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However from the face that X and S? are independent it follows thatZ?
and S? are also independent In the mgf of W this independence permits
us to write

E[et™] :E[ t((n 1s” +Zz)] E[ T 1)5) tZz] [ t((n Ohi ] tZZ] .

Since W and z?2 have chi-square distribution we can substitute their mgfs
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to obtain (1 —2t) "2 = E[ L oz )] (1- 2t)

(n 1)s —(n—
Equivalently we have E[ ] =(1 -2t ®=v, t<1/2

This of course is the mgf of ay?(n — 1) variable accordmgly( 2)52 has

that distribution

Example:- If X~N( ) Show that Z—[ ] ~N(0,1)
7
Solution:
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Since X~N (u, ;)
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Student t-distribution:-
Theorem :-Let T = Z

JQ
where Z is a random variable that is N(0,1), U is a random variable that is
X2(r) and Z and U are independent . Then T has a t distribution with pdf
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proof :- The joint pdf of Z and U is
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the cdf F(t)=P(T< t) of Tis given by

Fi)=P[ = <t
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the pdf of T is the derivative of the cdf, so, applying the fundamental
theorem of calculus to the inner integral
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In the integral, make the change of variables y=(1+t%/r)u, so that
du 1
dy ~ 1+t/r

_ T[r+1)]/2 1 oy
ThUS, f(t) - \/ﬁr(g) [(1+t2/r)(r+1)/2] fo F[%]Z(H'l)/Z (S dy

The integral in this last expression for f(t) is equal to 1 because the
integrand is like the pdf of a chi-square distribution with r+1 degrees of
freedom . Hence , the pdf is
(r+1)
0 =
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Example:if T ~t(10) then what is the probability that T is at least 2.228?
Solution:

P(T=2-228)=1—-P(T<2-228)

=1—-0-975 (from t-table)

=0-025



