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Methods of Estimation 
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The Unbiased Estimator  

Let             br a random sample of size    from apopulation with 

probability density function  (   ). An estimator  ̂ of    is a function of 

the random variables                which is free of the parameter θ . 

An estimate is a realized value of an estimator that is obtained when a 

sample is actually taken . 

Definition: An estimator      of     is said to be an unbiased estimator of   

   if and only if  

 ( ̂)    

If    is not unbiased , then it is called a biased estimator of    . 

An estimator of a parameter may not equal to the actual to the actual 

value of the parameter for every realization of the sample              , 

but if it is unbiased then on an average it will equal to the parameter . 

Example: Let                   be a random sample from a normal 

population with mean    𝜇 and variance      . Is the sample mean   ̅  

an unbiased estimator of the parameter 𝜇   

Solution: Since , each     (𝜇  
 )  we have  ̅  (𝜇  

  

 
) . 

That is , the sample mean is normal with mean  μ and variance 
  

 
 . 

Thus  ( ̅)    𝜇    Therefore, the sample mean  ̅ is an unbiased estimator 

of  𝜇 

Example:  Let               be a random sample  from a population 

with mean 𝜇 and variance        

Is the sample variance      an unbiased estimator of  the population 

variance        

Solution: Note that the distribution of the population is not given . 

However , we are given   ( ̅)   𝜇      [(   𝜇)
 ]       
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In order to find  (  )  we need find  ( ̅)      ( ̅ )  Thus we proceed 

to find these two expected values . 
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Therefore  
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Therefore , the sample variance     is an unbiased estimator of the 

population variance       

Example:  If                 (𝜇   
 )   and let    

    
   are estimators 

of     , Show that    
  is unbiased estimators of     and    

  is biosed 

estimator of    . Such that : 
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Solation:    

  
(   )  

  
   (   )     ( )  (   ) 

    
(   )  

 

  
   (   )      (  )  (   )        ( ) 

 (  )   (
(   )  

 

  
)  

(   )

  
 (  

 )             ( ) 

From (1) and (2) 

(   )

  
 (  

 )  (   )      (  
 )     

   
   is an unbiased estimator of          

   
   

 

  
   (   )     (  )  (   )       ( ) 

 (  )   (
   

 

  
)  

 

  
 (  

 )         ( )  

From (3) and (4)      
 

  
 (  

 )           (  
 )  

(   )

 
    

  
  is on biased estimator of     . 

Example:  Let                be a random sample from a benes 

popliation with parameter , show that  ̅  is an unbiased estimator. 

Solation:     
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Then     ̅   is an unbiased estimator for      . 

Example:  Let                 be a sample of size       from a 

distribution with un known mean    𝜇      the variance       is a 

known positive number ,  show that both   
   ̅       

  
 

 
(          )  are unbiased estimator  for  𝜇 . Compare the 

variance of     
  and     

   

Solution : 
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( 𝜇  𝜇   𝜇)  

 

 
( 𝜇)  𝜇 

    
      

   are unbiased estimators  . 
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Factorization ( jointly sufficient statistics ) 

Theorem :   Let                  be a random sample of size     from 

the density    (   )  where the parameter    may be a vector . A set of 

statistics  

     (               )          (               )  

Is jointly sufficient if and only if the joint density of  

               can be factored as         (                 ) 

  (  (               )      (               )  ) 

  (             )  (               ), 

where the function  (               ) is nonnegative and does not 

involve the parameter   and  the function  (             ) is 

nonnegative and depends on  (               ) only through the 

functions    (       )      (      )  

Note that , according to Theorem . There are many possible sets of 

sufficient  statistics. The above two  theorems give us a relatively easy 

method for judging  whether a certain statistic is sufficient or a set of 

statistics is jointly sufficient .  

However , the method is not the complete answer since a particular 

statistic may be sufficient yet the user may not be clever enough to factor 

the joint density . 
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The theorems may also be useful in discovering sufficient statistics .  

Actually , the result of either of the above factorization theorems is 

intuitively evident if one notes the following: 

1- If the joint density factors as indicated , then the likelihood 

function is proportional to  (            )   which depends on the 

observations                only through              [ the 

likelihood function is viewed as a function of    , so   

 (               )  is just a proportionality  constant  ] , which 

means that the information about      that the likelihood function 

contains is embodied in the statistics  

   (       )      (      )     

Example:    ∑   
 
       is sufficlent to    𝜇  ,    ( 𝜇   

  )   by using 

faclorization theorm . 

Solation:    
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 ∑   is sufficient statistic to   𝜇   . 

Example:     ∑   
 
   is sufficient  statistic to 1                 (      )   by 

using faclorization theorem     

Solation:    
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Example:∑     
 
    is sufficient statistic to    , 

      ( )  by using faclorization . 
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Solation:    

Since         ( ) 

 ( )  ,
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Since                   
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   is sufficient  statistic to      . 


