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The Unbiased Estimator

Let X;, X5, ... ... ,X,, br a random sample of size n from apopulation with
probability density function f(x: 8). An estimator 8 of 6 is a function of
the random variables X;, X5, ....., X,, which is free of the parameter 0 .

An estimate is a realized value of an estimator that is obtained when a
sample is actually taken .

Definition: An estimator 0" of 0 is said to be an unbiased estimator of
6 if and only if

E(d) =6
If " is not unbiased , then it is called a biased estimator of 9 .

An estimator of a parameter may not equal to the actual to the actual
value of the parameter for every realization of the sample X;, X5, ..., X;, ,
but if it is unbiased then on an average it will equal to the parameter .

Example: Let  X;,X,,....., X, be a random sample from a normal
population with mean p and variance a2 > 0 . Is the sample mean X
an unbiased estimator of the parameter u ?

_ 2
Solution: Since , each X;~N(u, 02), we have X~N (u ,%) .

2

That is , the sample mean is normal with mean p and variance % :

Thus E(X) = u . Therefore, the sample mean X is an unbiased estimator
of u

Example: Let X;,X5,.....,X, be a random sample from a population
with mean u and variance a2 > 0,

Is the sample variance S? an unbiased estimator of the population
variance g2 ?

Solution: Note that the distribution of the population is not given .
However , we are given E(X) = uand E[(X; — n)?] = o2.



In order to find E(5?), we need find E(X) and E(X?). Thus we proceed
to find these two expected values .

_ Xi+ X, + -+ X
E(X)=E(1 2 n)
n
n n
_n_ = u=u
=1 =1

Similarly:

Var(X) = Var (Xl tXt K ) Z Var(X;) = nizn:

i=1

2

Therefore

2
E(X?) = Var(X) + E(X)? = % + P

Consider

E(S?) =E

n
1 V2
TlZ(Xi —X)
i=1

n
E Z(Xi2 —2XX; + X?)
i=1

n

ZXiz — nX?

i=1

- {z E[X?] - E[n)?z]}

2 2 2 0-2
1[71(0 +u?) —n(u +7)]

Tn-—1

— 1 1 2
= —[(n-Do?



Therefore , the sample variance S?2 is an unbiased estimator of the
population variance o2 .

Example: If X, X,,...,X,~N(u,0?) and let SZ,5% are estimators
of o2, Show that S? is unbiased estimators of 62 and SZ is biosed
estimator of &2. Such that :

n

n
1 _ 1 _
512 =m2(xl —X)Z and 522 =—Z(Xi —X)Z
i=1

n i=1
7= (n—0—21)52~X2(n 1) sE@=m-1)
DR -t s EZ) = (- ()
s -5 (20 -k @

From (1) and (2)
(n—1)

0'2

E(S))=(m—-1) - E(SD) =o?

~ S§Z is an unbiased estimator of o2 .

2
Z, =" X0 1) SEZ) =(-1) ()

53

E(Z,) =E ("—) =ZESH____ (8
(o) (o)

From (3)and (4) SE(SH=n-1 -E(s3) = ("n;” RE
SZ is on biased estimator of o2 .

Example: Let X;,X,,...,X, be a random sample from a benes
popliation with parameter , show that X,, is an unbiased estimator.

Solation:



1 (e 1w 1/<
E(X,) = EE< Xi) = EZ(E(XI:)) = g( p)
i=1 i=1 =1

1
=—-np=0p
p

Then p* = X,, is an unbiased estimator for p .

Example: Let X;,X, and X; be a sample of size n=8 from a
distribution with un known mean —oo < u < oo the variance o2 is a
known positive number ,  show that both 6; = Xand®9, =

%(2X1+X2+5X3) are unbiased estimator for u. Compare the
variance of 6; and 6,

Solution :

W =
]TMUJ
=

R _ 1
E(91)=E(X)=E< Xi)=§3u=u

[2E(X,) + E(X2) + 5E(X3)]

x| =

w1
E(6;) = gE(zx1 + X, +5X3) =

1 1
=g@utp+sp) =g =yp

. 6; ,0, are unbiased estimators .

3

N 1 1
Var(@l) =V (52 Xi) =9 [V(X1) +V(X2) + V(X3)]

i=1

[02 4+ 0% +0%] = 2

1
302 = 30

O =
O =

. 1
Var(6;) =V [g (2X; + X, + 5X3)

1



::é%[4V(x3)+—V(Xz)+-25V(XsH

1 1
_ 2 4 <2 2y _ 2
—64(40 + 0 + 250“) 64(300)

15
327

Factorization ( jointly sufficient statistics )

Theorem : Let X, X5, ... .. ,X, bearandom sample of size n from

the density f(.;0), where the parameter 6 may be a vector . A set of
statistics

Sl = O-I(XIJXZJ ...... ,Xn ), ren wes nas "'ST' = JT(X1'X2' ...... ,Xn ).

Is jointly sufficient if and only if the joint density of
X1, X5, e e , X, canbe factored as fy x (X1,Xz, ... ... Xn 5 0)

.......

=g(0‘1(X1,X2, ...... ’XTL ), ...... ,O-r(Xl,Xz, ...... ,Xn ); 0)

= g(Sl’ e ""’ST' ; 9) h(XllXZJ ...... ,Xn ),

where the function h(X;,X,, ... ... ,X, ) is nonnegative and does not
involve the parameter 6 and the function g(Si,.......,S,; 8) is
nonnegative and depends on  (Xi, X5, ... ... ,X, )only through the
functions o;(., eceey.)y e, (o) ennny ).

Note that , according to Theorem . There are many possible sets of
sufficient statistics. The above two theorems give us a relatively easy
method for judging whether a certain statistic is sufficient or a set of
statistics is jointly sufficient .

However , the method is not the complete answer since a particular
statistic may be sufficient yet the user may not be clever enough to factor
the joint density .



The theorems may also be useful in discovering sufficient statistics .
Actually , the result of either of the above factorization theorems is
intuitively evident if one notes the following:

1- If the joint density factors as indicated , then the likelihood
function is proportional to g(S, ....., S,; €), which depends on the

observations  Xj,....,X, only through oy,....,0. [ the
likelihood function is viewed as a function of 6, so
h(X,X,, ... ... ,X,, ) isjust a proportionality constant ], which

means that the information about @ that the likelihood function
contains is embodied in the statistics

01(, i)y, 00, en,)

Example: n.X; issufficlentto u , X;~(u,0%) by using
faclorization theorm .

Solation:
fIXy oo Xl = fX, - F(Xo 1) v f (X, 1)
Since X;~(u,0?)

—1(X u)}
o for —0o <X <o

1
oV21
fIXt, o Xl = fX ). f (X 1) s f (X, 1)

=500 =

1 -1X-1y? 1 —1/X—p\? 1 —1/X—p)?
Z eT(T) . eT(T) . eT(T)
oV2nm oV2n oV2n

1 \*" -1EXi-w?
= ( ) . 202
oV2T
1 \" [Ex)*-2uY Xi+u?]
= ( ) .e 202
oV 2T
1 \* -Cx)*> -—(=2uYXi+u)
= ( ) 202 e 202
oV 2T
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0= (o) B
= . e 202 ,
ovV2Tm

—(=2u Yy Xi+u)
gt(X),0)=e 207

=~ ), X; is sufficient statisticto u .

Example: Y7X; is sufficient statistic to 1 X~(1,0%) by
using faclorization theorem

Solation:
X;~N(1,0?)

-1(X-1)?

e 202
oV2m

f&X) =
Since X; is i.id

FXy X, 1) = F(X, D). f (X, D o . f (X 1)

1 -1(X-1)? 1 ~1(X-1)2

Xy, o, X, 1) = e 202 . e 202
f' 1 n O'ré;f o 35;

1 1" -1Ex-1)°
X, e, X0, 1) = [ ] .e 2072
1 1" -UEX)*-2Y X+1]
FXp o X, 1) = [ ] e 707
oV2m

202 e 202

1 1" -1EX)* —(-2¥Xi+1)
f(Xl,....,Xn,l):[ ].e

o\2m
1 7" -1Ex»?
h(X)=[m/2_n] el
—(=2¥Xj+1)

g(t(x),0) =.e  20°
~ Y X; issufficient statisticto 1 .
Example:}.i*, X; is sufficient statistic to y,

X;~pio(y) by using faclorization .

-8-



Solation:
Since X;~pio(y)

y¥e™

f(X)={ X fOTX=O,1,,,,oo}

Since X; is i.i.d
flXe, oo Xy vl = fX0, V). f (X2, V). oo f (X ¥)

X1p-Y X20~Y
y“te Yy e
f[Xll ,Xn,]/] == T T e e e

X! X!
YZXi e_y
f[Xl, ,Xn,]/] = n—X
i=1 i
1 SR -
flX1, oo X v] = =5 .(y ie V)
i=1 Xi
h(X) = ,
iz1 Xi

g(t(x),6) = (y*Xi ™)

® . X; issufficient statisticto .



