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Mean square error Uadlf iy o o glia

Definition:

The mean square error of the estimatoré, denoted by MSE (6) is defined as
MSE () = E(8 — 6)? = var (9) + [E(8) — 6]?

Definition:

The unbiased estimator § that minimizes the mean square error is called the
minimum variance unbiased estimator (MVVUE) of 6.

Example:

Let X;, X,, X5 be a sample of size n= 3 from a distribution with unknown mean
u, -0o< u <oo, where the variance o2 is a known positive number.Show that
both 8, = X and 0, = [( 2X, + X, + 5X,)/8] are unbiased estimators
for u. Compare the variances of 8,, and 9, .

Solution:

We have E(8;) = E (X) == 3 = u. And E(f;) = E = [(2X; + X, +5X,)/8]
=5 [(2E(0) + E(X;) + SEQG)] = G [2u +p+5 ) =

Hence, both 0, and 0, are unbiased estimators. However:

Var (6,) = var (X) = % o%. Whereas Var (0,) = var [( 2X; + X, + 5X5)/8]

= 61—4 [4 var (X;) + var (X,) + 25 var (X3) = 61—4 30 o2

Because var (8;) < var (8,) , we see that X is a better unbiased estimator in the
sense that the variance of X is smaller.

e
MSE(0) =V(8) & Jul

MSE(0) = (Gsie s o sai) de & B(9)=E(0) -0 of Lasis <
V(8) + B(9)



Example:

If x4, oo , X, ~ N(M, c?) consider the two estimators of ¢2, 8, = 5,2 =
——%(x; — 02,0, = 5,2 = ~%(x; — ©)2 Find the e(8,,65).

(n-1)

Solution :
E(s;%) = 0% = MSE(s?) = var (s?)
n—1)s? n—1)>2
v<(—2)> =2n-1) = (—4) v(s?) =2(n—-1) = v(s?)
o o
= 2% MSE (s,2)
T-n
2(n—1) n—-1)
v(s,?) = 704 , E(s;?) = n a?
(n—1) 1 1
B(s.2) = E(s.2) — g2 = 2 _ 2 _ 2 __ -2 _ 2 _ _ _ 2
(559) (s,°)—0 ——0" -0 0°——0"—0 —0
(2n-2)c* 1 2n-2+1)c*
MSE(SZZ) = U(522)+B(S22) ZT-I_EOA = n2
(2n—1)o*
R
2n—-1) ,
_MSE(s;?) Tz 9 (2n—-1D(n-1) <1
T MSEGsD 2, 2n?
(n—1)
s, is relatively more efficient than s2.
Definition:
Jil 53 e o) il § 05 m(@)=WQ‘5;9JJa~J&5ﬁﬁ90\5 1
nE|— 302
(Uniformly Minimum Variance Unbiased Estimator) 41 e ehiwdl ol
(UMVUE)

Example: let x,, ... ... ... , X, ~ N(M,c?) show that x is an efficient est.



Solution :

1 _ 1 -2
foo = = 207 ¥
1 1
In(f) = In (=) = 55 (= )?
dIn(f) 1 _x-w_x
o —O—T‘ZZ(X—H)(—D— 52 g2 52
() 1
ou? T g2
1 1 1 a? ®
= = =—=v(x
nE[—azalng)] nE[—%] n% n

X is an efficient estimator of u

x isan UMVUE of u

e(0;,0,) =202 1 4 i e il S 1 4

v(61)
e(6;,0,) = osldl axdius (e e sl aaie) elsw ale JSE o paslll (IS 1A o
MSE (65)
MSE ()

Al Ay Jlally Gudall puadil AEGY) Ja o
Example: let x4, ... ... ... , X, ~ Po(4) show that x;, is an consis est. of the (1) .

Solution :

DE®) =~ (EQ) + -+ EQ@)) = ~(A+ -+ )

1
n—times =-(ni)=1A1
n
A
2) v(x) = "
limv(x) =lim—=0
n-—-o n-on

X IS a consistent est of A.



Example: let x;, ... ... ... Xy, ~ N(u,02)

a) show that the sample variance s? is a consistent estimator for ¢2.
b) Show that the max . liklelihood estimator for u & o2 are consistent
estimator for u & o2

Solution :
a)
1) E(s?) = o2

2) v(s?) = 22

n-1

_ - 20*
lim v(s?) = lim =0
n-o n-on—1

s? is consistent estimator of o2
b)
MLEA=X &  MLEo%== S(X; — X)?

1) EX)=n

o2 _ o2
2) V(c%) = — = limp,ev(X) =limy,0—=0
X is consistent est. of u

A~ 1 >
MLE 62 = = (X; — X)?

A2y — (L 712y - (D [ Z&i—X)?] _ (n—-1)
E(6%) =E ( 20 — 03 =R [E ] =202

- g2 is biased

Z:(Tl—zl)
o

E(Z)=n-1)

S2~X?’(n—1)

V(Z) =2(n—-1)

n—1
B(6?%) = E(6%) —d? =




1 1
—g?2_152_42 =_1,2
n n

1
(n-1)

/\2_1 —2_(7’1—1) v 2 _(n—l) 2
6% = 23(x; — D)2 = BB ISR - D)2 = s

n-1)? 20*

~ -1 -1)2
v(e?) =v[ERs?| =L v(s?) =

n2 (n-1)
_ 2(n-1)c*
=
. N ) —g?
lim,,_,oo B(6%) = lim,,_, —=0
_ 4
lim,, e V (62) = lim, o, Z“‘n;j“‘) =0

CE[(6" —0)2] =V (9) + [B ()]
«limy e E (6% — 0%)? = lim,,V (6)?+lim,_[B (62)]?
=0+0=0

Sufficiency Al

In the statistical inference problems on a parameter, one of the major questions
is: Can a specific statistic replace the entire data without losing pertinent
information?

Suppose X; ..., X, is random sample from a probability distribution with
unknown parameter 6. In general, statisticians look for ways of reducing a set of
data so that these data can be more easily understood without losing the
meaning associated with the entire collection of observations. Intuitively, a
statistic U is a sufficient statistic for a parameter 8 if U contains all the
information available in the data about the value of 4.

For example, the sample mean may contain all the relevant information about
the parameter u, and in that case U = X is called a sufficient statistic for u . An
estimator that is a function of a sufficient statistic can be deemed to be a "good"
estimator, because it depends on fewer data values. When we have a sufficient
statistic U for , we need to concentrate only on U because it exhausts all the
information that the sample has about 6. That is, knowledge of the actual n
observations does not contribute anything more to the inference about 6.



Definition :

Let X;,...., X,, be a random sample from a probability distribution with
unknown parameter 8 .Then, the statistic U=g (X;....., X;,) is said sufficient for
6. if the conditional pdf or pf of X,,...., X,, given U = u does not depend on 6
for any value of u. An estimator of 8 that is a function of a sufficient statistic for
6 is said to be a sufficient estimator of 6.

Definition: Simple consistency

Let Ty, T,,...., T, be a sequence of estimators of 7(@), where T, =t, (X1,
.....Xy). The sequence {T,,} is defined to be a simple (or weakly) consistent
sequence of estimators of T (0) if for every €> 0 the following is satisfied:

7]Li_r)r()10P9 [7(0) —e< T, <1(0) + €]

Remark: If an estimator is a mean-squared-error consistent estimator, it is also
a simple consistent estimator, but not necessarily vice versa.

Proof :

Pylt(0) —e< T, <1(0)+¢€]=P[|T, — (0)| < €]

=Py [[T,-t(0)]P<e?q]=1- Se [[Tn—zr(o)]Z]

€

by the Chebyshev inequality. As n approaches infinity,Sy [[T,, — 7(6)]*]
approaches 0. Hence lim Py [t(0) —e < T,, <t(0) +€] =1

Example:

Let xq, ... ... , X, be iid Bernoulli random variables with parameter 6. show
that).™ , x; is sufficient for 6.

Solution:
The joint probability mass function of x,, ... ... , Xy IS
F (g, or v, X3 0) = OZE=1% (1 — §)Liza i
Because U = )X, x; we have
JiC ,x;0) =0V (1 —9)nU 0<U<n

Also, because U~b(n, 8) we have



f(u,0) = (Z) gv (1 — )V 0<U<n

Also,
. f(xq,e0Xn) _yn .
f(xl, ...,xn|U = u) = W = { fuw) U= Li=1 xl}
v 0 0.Ww.
Therefore ,

oe(1—om 1 C
fQy, x5 u) = u= ) x;
T~ Gea-orr () 2,

0 0.W.

f(xq, e, xp|U =u) =

Which is independent of . Therefore U is sufficient for .

Example:

let x4, ... ... , X, be arandom sample from passion (1) show that the mean x is
consistent to A

Solution:

~ piosson Distribution

v(x) = V[Z%] = %V[le] = %v[x1 + x5 + -+ x,]

1 1
v(x)——wheree_k—_k\f = k_% N kzzezTn
_ A 1 A
n E°n €4 n
A
_ A A
lim P {|x—A| >k |[-¢ <—— by chebysheos =0

2711 _ _
lim,, [E] =~ o 0 then x is consistent to 1



Example:

let x4, ... ... , X, be arandom sample from N (u, o)

2 _ _
2=y [’;‘_ﬂ show that S,,% is consistent to o2

Solution:

sincer=n-—1

v(S,?) =2(n—1)

v [na—_zlsnz] =2(n—-1)

(n— 1)2 5 ot
=2(n-1|*r—
s =20 |
v(5?) = M S 1(5?) = 22— where e = ko
n—1)>2 (n-1) Sn
. 204 Sk evn—1 2 e2(n—1)
= = —- = e —
RN CEED 207 20°
I |S 2 2| ok 204 - 1
S L n—-1D| " e(n-1)
204
2 204 204 B
nlgréo |S -0 | >k =D < m by chebysheos = 0
204
R
(0]

S, is consistent to o2,



