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Roa – Black well theorem 

If  ̂ is unbiased est . for   and t(x) is sufficient for  , then the estimation  ̅ 

where  

 ̅   [
 ̂

 ( )
] 

is also unbiased and its variance less than or equal to the variance of  ̂ i .e : 

 ( ̅)   ( ̂) 

Ex :            is ar.s from Ber( ) if   is unbiased est for  , Find a better est 

then By using the Roa_Black well Theorem . 

Sol : 
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h(x) does not depend upon   

Then ∑    is s.s for   

We have  (  )    

By using the Roa_Black well theorem we get  
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Now what is  ̅ 
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      is unbiased  and ∑     is sufficient  

 ∑    

     

[
     
∑    

] 



 

 

 

2 

    [
    

∑    
]     [

    

∑    
] 

 [
    

∑    
] 

 
 [    ∑     

 
   ]

 (∑     
 
   )

 

 [    ]    

     ( ) 

∑       (   )  

 (∑    )  (
 
 
)   (   )    

∑      (     ) 

 [∑  

 

 

    ]  (
   
   

)    (   )    

 
 [    ]   [∑       ]

 
   

 [∑    ]
 

 
 (
   
   

)    (   )   

(
 
 
)   (   )   

 

 
(
   
   

)

(
 
 
)

 

(   ) 

(   ) ((   )  (   )) 

  
  (   ) 

 

(   ) 

(   ) (   ) 
 
  (   ) 

  
 

(   ) 

(   ) 
 
  (   ) 

 (   ) 
 
 

 
 
∑  
 
  ̅ 

  ̅ is a better estimator than   for   
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Example: 

Let              ( )        use  the Roa – Black well theorem to find an 

estimator for    better than    

iid= identically independent distribution 

Solution: 
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 ∑   is  s.s for  

Now , to Find  ̅ 
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  ̅ 

 ̅  is a better estimator for   

Completeness :- A statistic t(x) is said to be complete if for all    the function 

h(t) statistic   ( ( )    which implies that   ( )    

Ex: let      ( )show that x is complete  

Sol : 

 (   )    (   )    

We have  

 ( ( )    we prove  ( )    
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 ( ( ))  ∑  ( )

     

  (   )    
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 ( )   ( ( )   ( ))    

    is perimeter 

 ( )   ( )     ( )   ( ) 
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 ( )                

                

Example:  

           is ar.s from a dist     ( )  . show that   ∑  is complete 

sufficient statistic for   

Solution:  
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Now , we went to prove   ∑   is C.S.S  
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Exponential Family of distribution  

Definition: A one Parameter exponential family of distribution is that if  (   ) 

can be express in the from  

 (   )   ( )   ( )  ( )   

    (   )    ( )    ( )   ( )            

Where      does  not depot upon  . 

Example: if      ( )  , show that   (   ). belongs to exponential family  
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 (   ) belongs to exponential family.   

H.w :    ( ) show that  (   ) belong to exponential family . 

Theorem :  

Let  (   )  be a P.d.f which represent a regular case of the exponential class . 

Than if           . 

Where (n) is a fixed positive integer is  a random sample from a dist , with P. d 

.f  (   ) the  statistic    ∑    
     is sufficient statistic for   and the family 

 (   ) of probability density family of  t is complete that is t is C.S.S for  . 

Theorem :  Any function of C.S.S is MVUE of it expectation  

Example: if      ( ) find MVUE  
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 (   )         to exponential family   ∑  (  )
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    is C.S.S for   . 


