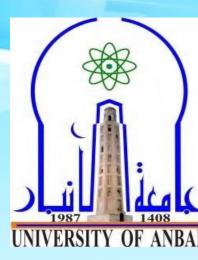
Republic of Iraq Ministry of Higher Education & Research University of Anbar College of Education for Pure Sciences

Department of Mathematics



محاضر ات الاحصاء 2 درس المادة : الاستاذ المساعد الدكتور فر اس شاکر محمود

A Statistical Test of Hypothesis

A Statistical of hypothesis consists of five parts:

- 1. The null hypothesis denoted by H_{\circ} .
- 2. The alternative hypothesis denoted by H_1 .
- 3. The test statistic and its *P*_value.
- 4. The rejection region.
- 5. The conclusion.

Definition:

(1) The Two competing hypothesis are the alternative hypothesis H_1 generally the hypothesis that the researcher wishes to support and the null hypothesis H_\circ a contradiction of the alternative hypothesis.

(2) Test statistic :a single number calculated from the sample data .

(3) *P*_value :a probability calculated using the test statistic .

Example :. a random sample of 100 California carpenters , you wish to show that the average hourly witness of carpenters in the state of California is different from 14\$, which is the national average . **Solution** :.

(1) This is alternative hypothesis $H_1: \mu \neq 14$ The null hypothesis $H_\circ: \mu = 14$

(2) Test statistic let $\overline{X} = 15$ lies $S.E = \frac{s}{\sqrt{n}} = \frac{2}{\sqrt{100}} \Longrightarrow Z = \frac{\overline{X} - \mu}{\sigma_{/\sqrt{n}}} = \frac{15 - 14}{2/10} = 5$ (3) $P_value = P(Z < 5) + P(Z > 5) \cong 0$ Small P_value Large P_value

Definition:

A Type I error for a statistical test is the error of rejecting the null hypothesis when it is true .The level of significance (significance level) for a statistical test of hypothesis is

 $\alpha = p(Type \ I \ error) = p(falsely \ rejecting \ H_\circ) = p(rejecting \ H_\circ \ when \ it \ is true)$



Large sample statistical Test For μ

(1)Null hypothesis $H_{\circ}: \mu = \mu_{\circ}$ (2)Alternative hypothesis $H_{1}: \mu \neq \mu_{\circ}$ (Two Tailed test) $H_{1}: \mu < \mu_{\circ} \text{ or } H_{1}: \mu > \mu_{\circ}$ (one Tailed test)

(3)Test statistic : $Z = \frac{\bar{x} - \mu_{\circ}}{\sigma_{/\sqrt{n}}}$ estimated as $Z = \frac{\bar{x} - \mu_{\circ}}{s_{/\sqrt{n}}}$ (4)Rejection region :Reject H_{\circ} when(one Tail test) $Z > Z_{\alpha}$ or $Z < -Z_{\alpha}$ when alternative hypothesis $H_1: \mu < \mu_{\circ}$ (Two Tailed test) $Z > Z_{\frac{\alpha}{2}}$ or $Z < -Z_{\frac{\alpha}{2}}$

Calculating the *P*_value

Definition: The *P*_value or observed significance level of a statistical test is the smallest value of α for which H_{\circ} can be rejected. It is the a ctual risk of committing a Type I error, if H_{\circ} is rejected based on the observed value of the test statistic. The *P*_value measures the strength of the evidence against H_{\circ} .

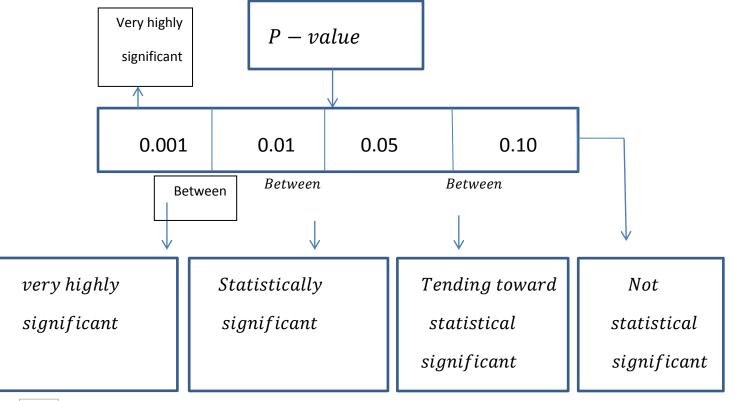
<u>Definition</u>: If the *P*_value is less than or equal to α preassigned significance level α , then the null hypothesis can be rejected, and you can report the results are statistically significant at level α .

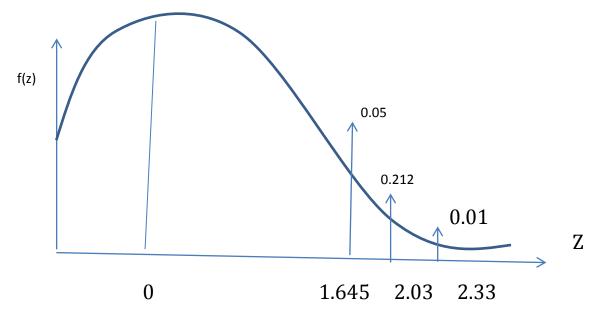
(1)if P_value is less than $0.01, H_\circ$ is rejected or between 0.01 and 0.001, H_\circ is rejected. The result are highly significant

(2) if P_{-} value between 0.01 and 0.05 , H_{\circ} is rejected .The result are statistically significant

(3) if P_value is greater than 0.001, the result are very highly significant (4) if the P_value is between 0.05 and 0.10, H_o is usually not rejected. The result are only tending toward statistical significance.

(5) if the P_value greater than 0.10, H_{\circ} is not rejected the result are not statistically significant.





Standard normal test Z

Two Type of Errors

Definition: :

(1)A Type I error for a statistical test is the error of rejecting H_{\circ} when it is true. The probability of making a type I error is denoted by the symbol α . (2)A Type II error for a statistical test is the error of accepting H_{\circ} when it is false and some H_1 is true. The probability of making a Type II error is denoted by the symbol β .

(3)The power of a statistical test, given as $1 - \beta = p(reject H_{\circ} when H_{1} is true)$ measures the ability of the test to perform as required.

Large Sample Statistical Test For($\mu_1 - \mu_2$)

(1)Null hypothesis : H_{\circ} : $\mu_1 - \mu_2 = D_{\circ}$, where D_{\circ} is some specified difference that you wish to test it .For many test $D_{\circ} = 0$ there is no difference between μ_1 and μ_2

(2) Alternative hypothesis:

(one Tailed Test) $H_1: \mu_1 - \mu_2 > D_\circ \text{ or } H_1: \mu_1 - \mu_2 < D_\circ$

(Two Tailed Test) $H_1: \mu_1 - \mu_2 \neq D_\circ$

(3)Test statistic:

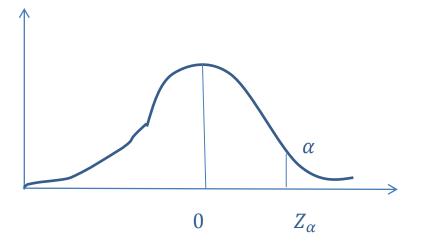
$$\mathbf{Z} = \frac{(\overline{X_1} - \overline{X_2}) - D^{\circ}}{S.E} = \frac{(\overline{X_1} - \overline{X_2}) - D^{\circ}}{\frac{S_1}{\sqrt{n_1}} + \frac{S_2}{\sqrt{n_2}}}$$

(4)Rejection region : Reject H_{\circ} when (one Tailed Test)

 $Z > Z_{\alpha} \text{ or } Z < -Z_{\alpha} \text{ when } H_1: (\mu_1 - \mu_2 < D_{\circ}) \text{ or when } P_value < \alpha$

(Two Tailed Test) $Z > Z_{\frac{\alpha}{2}} \text{ or } Z < -Z_{\frac{\alpha}{2}}$ Large Sample Test of Hypothesis for A Binomial Proportion (1)Null hypothesis: H_{\circ} : $P = P_{\circ}$ (2)Alternative hypothesis: (One Tailed Test): $H_1: P > P_\circ \text{ or } H_1: P < P_\circ$ (Two Tailed Test): $H_1: P \neq P_\circ$ (3)Test statistic : $Z = \frac{\bar{P} - P_{\circ}}{S.E} = \frac{\bar{P} - P_{\circ}}{\sqrt{\frac{P_{\circ}(1 - P_{\circ})}{n}}} \text{ with } \bar{P} = \frac{x}{n}$ Where x is the number of successes in n binomial trials. (4)Rejection region : Reject H_{\circ} when (One Tailed Test) $Z > Z_{\alpha} \text{ or } Z < -Z_{\alpha} \text{ when } H_1: P < P_{\circ} \text{ or when } P_value < \alpha$ (Two Tailed Test): $Z > Z_{\frac{\alpha}{2}} \text{ or } Z < -Z_{\frac{\alpha}{2}}$ $\frac{\alpha}{2}$ $\frac{\alpha}{2}$ $-Z_{\frac{\alpha}{2}}$ 0 $Z_{\frac{\alpha}{2}}$

٦



Large Sample Statistical Test For $(P_1 - P_2)$ (1)Null hypothesis : $H_0: P_1 - P_2 = 0$ or $H_0: P_1 = P_2$ (2)Alternative hypothesis: (One Tailed Test): $H_1: P_1 - P_2 > 0$ or $H_1: P_1 - P_2 < 0$ (Two Tailed Test): $H_1: P_1 - P_2 \neq 0$ (3)Test Statistic: $Z = \frac{(\overline{P_1} - \overline{P_2}) - 0}{S.E} = \frac{(\overline{P_1} - \overline{P_2}) - 0}{\sqrt{\frac{P_1(1 - P_1)}{n_1} + \frac{P_2(1 - P_2)}{n_2}}}$

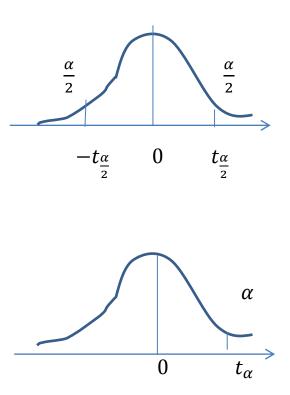
where $\overline{P_1} = \frac{x_1}{n_1}$ and $\overline{P_2} = \frac{x_2}{n_2}$, since $P_1 = P_2 = P$ used the s.e is unknown, it is estimated by $\hat{P} = \frac{x_1 + x_2}{n_1 + n_2}$ then the test statistic

$$Z = \frac{(\widehat{P_1} - \widehat{P_2}) - 0}{\sqrt{\frac{\widehat{P}(1 - \widehat{P})}{n_1} + \frac{\widehat{P}(1 - \widehat{P})}{n_2}}} = \frac{(\widehat{P_1} - \widehat{P_2})}{\sqrt{\widehat{P}(1 - \widehat{P})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

(4)Rejection Region : Reject *H*_° when (One Tailed Test):

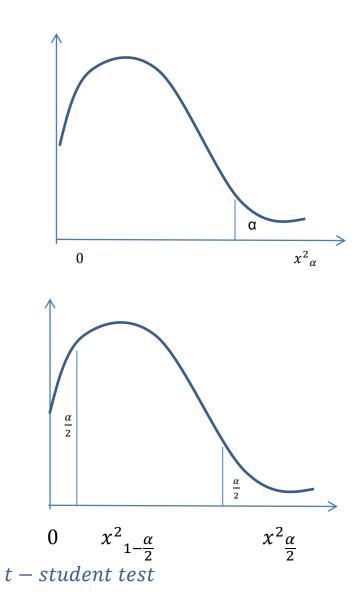
 $\begin{array}{l} Z>Z_{\alpha} \ or \ Z<-Z_{\alpha} \ when \ H_{1}:P_{1}-P_{2}<0 \ or \ when \ P_{-}value <\alpha \\ (\text{Tow Tailed Test}): \\ Z>Z_{\frac{\alpha}{2}} \ or \ Z<-Z_{\frac{\alpha}{2}} \end{array}$

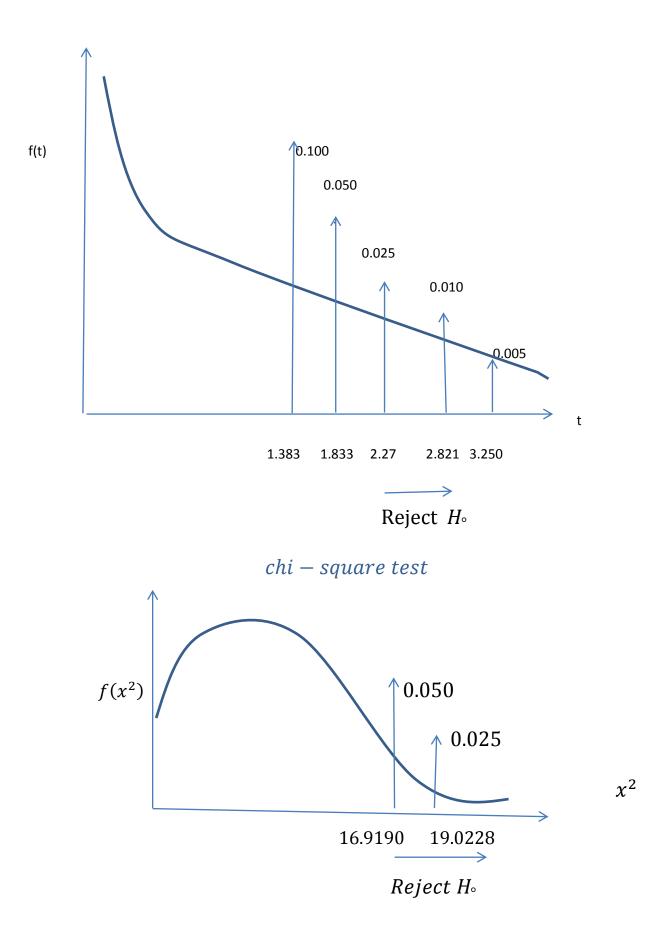
Small Sample Hypothesis Test For μ (1) Null hypothesis: $H_{\circ}: \mu = \mu_{\circ}$ (2) Alternative hypothesis: (One Tailed Test): $H_{1}: \mu > \mu_{\circ} \text{ or } H_{1}: \mu < \mu_{\circ}$ (Two Tailed Test): $H_{1}: \mu \neq \mu_{\circ}$ (3) Test Statistic : $t = \frac{\bar{x} - \mu_{\circ}}{s/\sqrt{n}}$ (4) Rejection Region: Reject , H_{\circ} when (One Tailed Test): $t > t_{\alpha} \text{ or } t < -t_{\alpha} \text{ when } H_{1}: \mu < \mu_{\circ} \text{ or when } P_{-}value < \alpha$ (Two Tailed Test): $t > t_{\alpha} \text{ or } t < -t_{\alpha} \frac{1}{2}$



Test of Hypothesis Concerning The difference between Two means : Independent Random Samples.

(1)Null hypothesis : H_{\circ} : $\mu_1 - \mu_2 = D_{\circ}$, where D_{\circ} is some specified difference that you wish to test it . For many test $D_{\circ} = 0$ there is no difference between μ_1 and μ_2 (2)Alternative hypothesis: (one Tailed Test) $H_1: \mu_1 - \mu_2 > D_\circ \text{ or } H_1: \mu_1 - \mu_2 < D_\circ$ (Two Tailed Test) $H_1: \mu_1 - \mu_2 \neq D_\circ$ (3)Test Statistic : $t = \frac{(\overline{x_1} - \overline{x_2}) - D_{\circ}}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}$ where $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ (4) Rejection region : Reject H_{\circ} when (one Tailed Test): $t > t_{\alpha}$ or $t < -t_{\alpha}$ when $H_1 : (\mu - \mu_{\circ}) < D_{\circ}$ or when P_value $< \alpha$ (Two Tailed Test): $t > t \frac{\alpha}{2}$ or $t < -t \frac{\alpha}{2}$ Test of hypothesis Concerning a population Variance (1)Null hypothesis : H_\circ : $\sigma^2 = \sigma^2_\circ$ (2) Alternative hypothesis : (One Tailed Test): $H_1: \sigma^2 > \sigma^2$ or $H_1: \sigma^2 < \sigma^2$ (Two Tailed Test): $\sigma^2 \neq \sigma^2_{\circ}$ (3)Test statistic : $x^2 = \frac{(n-1)s^2}{\sigma^2}$ (4)Rejection Region : Reject H_{\circ} when (One Tailed Test): $x^{2} > x^{2}_{\alpha}$ or $x^{2} < x^{2}_{(1-\alpha)}$ when $H_{1}: \sigma^{2} < \sigma^{2}_{\circ}$ (Two Tailed Test): $x^2 > x^2 \frac{\alpha}{2}$ or $x^2 < x^2 \frac{\alpha}{1-\frac{\alpha}{2}}$ lower upper





Test of hypothesis Concerning the equality of two population variances

(1)Null hypothesis : $H_{\circ}: \sigma_{1}^{2} = \sigma_{2}^{2}$ (2)Alternative hypothesis : (One Tailed Test):

(Two Tailed Test):

 $\begin{array}{ll} H_1: \ \sigma^2{}_1 > \sigma^2{}_2 \ or \ H_1: \ \sigma^2{}_1 < \sigma^2{}_2 & \sigma^2{}_1 \neq \sigma^2{}_2 \\ (3) \text{ Test Statistic :} \\ (\text{One Tailed Test}): & (\text{Two Tailed Test}): \\ F_{\alpha} = \frac{s^2{}_1}{s^2{}_2} & F_{\frac{\alpha}{2}} = \frac{s^2{}_1}{s^2{}_2} \\ \text{where } s^2{}_1 \text{ is the larger sample variance .} \\ (4) \text{ Rejection Region :Reject } H_{\circ} \text{ when} \\ (\text{One Tailed Test}): \\ \text{F} > \text{F}_{\alpha} & \text{or when P_value } < \alpha \\ (\text{Two Tailed Test}): \\ F > F_{\frac{\alpha}{2}} \end{array}$

