
UNIVERSITY

Republic of Iraq Ministry of Higher Education & Research

University of Anbar

College of Education for Pure Sciences

Department of Mathematics

محاضر ات الاحصاء ٢ مدرس المادة : الاستاذ المساعد الدكتور فراس شاكر م

We begin this chapter on tests of statistical hypotheses with an application in which we define many of the terms associated with testing .

Example :- Let X equal the breaking strength of a steel bar. If the bar is manufactured by process I, X is N(50,36) i.e., X is normally distributed with $\mu = 50$ and $\sigma^2 = 36$. It is hoped that if process II (a new process) is used, X will be N(50,36). Given a large number of steel bars manufactured by process II, how could we test whether the five-unit increase in the mean breaking strength was realized?

In this problem, we are assuming that X is $N(\mu, 36)$ and μ is equal to 50 or 55. We want to test the simple null hypothesis $H_0: \mu = 50$ against the simple alternative hypothesis $H_1: \mu = 55$. Note that each of these hypotheses completely specifies the distribution of X. That is , H_0 states that X is N(50,36) and H_1 states that X is N(55,36). (If the alternative hypothesis had been $H_1: \mu > 50$, it would be a composite hypothesis, because it is composed of all normal distributions with =36and means greater than 50) In order to test which of the two hypotheses , H_0 or H_1 , is true, we shall set up a rule based on the breaking strengths $x_1, x_2, ..., x_n$ of n bars (the observed values of a random sample of size n from this new normal distribution). The rule leads to a decision to accept or reject H_0 ; hence, it is necessary to partition the sample space into two parts-say, C and C' - so that if $(x_1, x_2, ..., x_n) \in C$, H_0 is rejected, and if $(x_1, x_2, ..., x_n) \in C'$, H_0 is accepted (not reject). The rejection region C for H_o is called the critical region for the test. Often , the partitioning of the sample space is specified in terms of the values of a statistic called the test statistic . In this example, we could let $\frac{1}{x}$ be the test statistic and say , take $C = \{(x_1, x_2, \dots, x_n): \bar{x} \ge 53\}$; that is we will reject H_o if $\bar{x} \ge 53$. If $(x_1, x_2, ..., x_n) \in C$ when H_o is true, H_0 would be rejected when it is true, a Tape I error . If $(x_1, x_2, ..., x_n) \in C'$ when H_1 is true , H_o would be accepted (i.e. not rejected) when in fact H_1 is true, a Type II error. The probability of a Type I error is called the **significance level** of the test and is denoted by α .

That is, $\alpha = P[(x_1, x_2, ..., x_n) \in C; H_o]$ is the probability that $(x_1, x_2, ..., x_n)$ falls into C when H_o is true. The probability of a Type II error is denoted by β ; that is, $\beta = P[(x_1, x_2, ..., x_n) \in C'; H_1]$ is the probability of accepting (failing to reject) H_o when it is false. As an illustration, suppose n=16 bars were tested and $C = \{\bar{x}: \bar{x} \ge 53\}$. Then \bar{X} is N(50,36/16) when H_o is true and is N(55,36/16) when H_1 is true. Thus,

$$\alpha = P(\bar{X} \ge 53; H_o) = P\left(\frac{\bar{X} - 50}{\frac{6}{4}} \ge \frac{53 - 50}{\frac{6}{4}}; H_o\right)$$
$$= 1 - \emptyset(2) = 0.0228$$

And

$$\beta = P(\bar{X} \ge 53; H_1) = P\left(\frac{\bar{X} - 55}{\frac{6}{4}} \ge \frac{53 - 55}{\frac{6}{4}}; H_1\right)$$

$$= \emptyset\left(-\frac{4}{3}\right) = 1 - 0.9087 = 0.0913 \,.$$

Figure 8.1-1 shows the graphs of the probability density functions of \overline{X} when H_o and H_1 , respectively, are true. Note that by changing the critical region, C, it is possible to decrease (increase) the size of α but this leads to an increase (decrease) in the size of β . Both α and β can be decreased if the sample size n is increased.

Example :- Assume that the underlying distribution is normal with unknown mean μ but known variance $\sigma^2 = 100$. Say we are testing the simple null hypotheses $H_0: \mu = 60$ against the composite alternative hypotheses $H_1; \mu > 60$ with a sample mean \bar{X} based on n=52 observations. Suppose that we obtain the observed sample mean of $\bar{X} = 62.75$. If we compute the probability of obtaining an \bar{X} of that value of 62.75 or greater when $\mu = 60$. then we obtain the P-value associated with $\bar{X} = 62.75$.

$$P - value = P(\bar{X} \ge 62.75; \mu = 60)$$

$$= P\left(\frac{\bar{X} - 60}{\frac{10}{\sqrt{52}}} \ge \frac{62.75 - 60}{\frac{10}{\sqrt{52}}}; \ \mu = 60\right)$$
$$= 1 - \phi\left(\frac{62.75 - 60}{\frac{10}{\sqrt{52}}}\right) = 1 - \phi(1.983) = 0.0237$$

١

 \circ

If this p-value is small, we tend to reject the hypotheses $H_o: \mu = 60$. For example rejecting $H_o: \mu = 60$ if the p-value is less than or equal to $\alpha = 0.05$ is exactly the same as rejecting H_o if

$$\bar{X} \ge 60 + (1.645) \left(\frac{10}{\sqrt{52}}\right) = 62.281$$
.

Here $P - value = 0.0237 < \alpha = 0.05$ and $\overline{X} = 62.75 > 62.281$

To help the reader keep the definition of p-value in mind, we note that it can be thought of as that tail-end probability, under H_o , of the distribution of the statistic (here \overline{X}) beyond the observed value of the statistic.

If the alternative were the two-sided $H_1: \mu \neq 60$, then the p-value would have been double 0.0237; that is, then the p-value =2(0.0237)=0.0474 because we include both tails.

To test $H_0: \mu = \mu_0$ against one of these three alternative hypotheses, a random sample is take from the distribution and an observed sample mean, \overline{X} , that is close to μ_0 supports H_o . The closeness of \overline{X} to μ_o is measured in terms of standard deviations of \overline{X} , α/\sqrt{n} , when α is known, a measure that is sometimes called the standard error of the mean. Thus the test statistic could be defined by

H _o	H ₁	Critical Region
$\mu = \mu_0$	$\mu > \mu_0$	$z \ge z_{\alpha} \text{ or } \bar{X} \le \mu_0 + z_{\alpha} \sigma / \sqrt{n}$
$\mu = \mu_0$	$\mu < \mu_0$	$z \leq -z_{\alpha} \text{ or } \bar{X} \leq \mu_0 - z_{\alpha} \sigma / \sqrt{n}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ z \ge z_{\alpha}/2 \text{ or } \bar{X} - \mu_0 \ge z_{\alpha}/\sigma/\sqrt{n}$

$$Z = \frac{\bar{X} - \mu_0}{\sqrt{\sigma^2/n}} = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

And the critical regions, at a significance level α , for the three respective alternative hypotheses would be $(i)Z \ge Z_{\alpha}$, $(ii) Z \le -Z_{\alpha}$, and $(iii)|Z| \ge Z_{\alpha/2}$. In terms of \overline{X} , these three critical regions become $(i)\overline{X} \ge \mu_0 + Z_{\alpha} \left(\frac{\sigma}{\sqrt{n}}\right)$, $(ii)\overline{X} \le \mu_0 - Z_{\alpha} \left(\frac{\sigma}{\sqrt{n}}\right)$, and $(iii)|\overline{X} - \mu_0| \ge Z_{\alpha} \left(\frac{\sigma}{\sqrt{n}}\right)$.

The three tests and the distribution is $N(\mu, \sigma^2)$ and σ^2 is known.

It is usually the case that the variance σ^2 is not known. Accordingly, we now take a more realistic position and assume that the variance is unknown. Suppose our null hypotheses is $H_o: \mu = \mu_0$ and the two-sided alternative hypotheses is $H_1: \mu \neq \mu_0$.

Recall from section 7.1 for a random sample $x_1, x_2, ..., x_n$ taken a normal distribution $N(\mu, \sigma^2)$, a confidence interval for μ is based on

$$T = \frac{\bar{X} - \mu}{\sqrt{s^2/n}} = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

This suggests that T might be a good statistic to use for the test of $H_o: \mu = \mu_0$ with μ replaced by μ_0 . In addition, it is the natural statistic to use if we replace σ^2/n by its unbiased estimator s^2/n in $(\bar{X} - \mu_0)/\sqrt{\sigma^2/n}$ in Equation 8.1-1. If $\mu = \mu_0$, we know that T has a t distribution with n-1 degrees of freedom. Thus, with $\mu = \mu_0$,

$$P\left[|T| \ge t_{\frac{\alpha}{2}}(n-1)\right] = P\left[\frac{|\overline{X} - \mu_0|}{\frac{S}{\sqrt{n}}} \ge t_{\frac{\alpha}{2}}(n-1)\right] = \alpha$$

Accordingly, if \overline{X} and s are, respectively, the sample mean and sample standard deviation, then the rule that reject $H_o: \mu = \mu_o$ and accepts $H_1: \mu \neq \mu_o$ if and only if

$$|t| = \frac{|\bar{X} - \mu_0|}{\frac{s}{\sqrt{n}}} \ge t_{\frac{\alpha}{2}}(n-1)$$

Provides a test of this hypotheses with significance level α . Note that this rule is equivalent to rejecting $H_0: \mu = \mu_0$ if not the open $100(1 - \alpha)\%$ confidence interval

$$\left(\bar{X} - t_{\frac{\alpha}{2}}(n-1)\left[\frac{s}{\sqrt{n}}\right], \bar{X} + t_{\frac{\alpha}{2}}(n-1)\left[\frac{s}{\sqrt{n}}\right]\right)$$

The following Table summarizes tests of hypotheses for a single mean . along with the three possible alternative hypotheses , when the underlying distribution is $N(\mu, \sigma^2)$, σ^2 is unknown, $t = \frac{(\bar{x} - \mu_0)}{\frac{s}{\sqrt{n}}}$. and $n \le 30$. If n > 30, we use the following Table for approximate tests, with σ replaced s.

H _o	H_1	Critical Region
$\mu = \mu_0$	$\mu > \mu_0$	$z \ge z_{\alpha} \text{ or } \bar{X} \le \mu_0 + z_{\alpha} \sigma / \sqrt{n}$
$\mu = \mu_0$	$\mu < \mu_0$	$z \leq -z_{\alpha} \text{ or } \bar{X} \leq \mu_0 - z_{\alpha} \sigma / \sqrt{n}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ z \ge z_{\alpha}/2 \text{ or } \overline{X} - \mu_0 \ge z_{\alpha}/\sigma/\sqrt{n}$

Example : Let X (in millimeters) equal the growth in 15 days of a tumor induced in a mouse . Assume that the distribution of X is $N(\mu, \sigma^2)$. We shall test the null hypotheses $H_0: \mu = \mu_0 = 4.0 \text{ mm}$ aganst the two-sided alternative hypothesis $H_1: \mu \neq 4.0$ If we use n=9 observations and a significance level of $\alpha = 0.10$, the critical region is

$$|t| = \frac{|\bar{X}-4.0|}{\frac{s}{\sqrt{9}}} \ge t_{\frac{\alpha}{2}}(8) = 1.860$$
.

If we are given that n = 9, $\overline{X} = 4.3$, and s = 1.2 we see that

$$t = \frac{4.3 - 4.0}{\frac{1.2}{\sqrt{9}}} = \frac{0.3}{0.4} = 0.75$$

Thus,

$$|t| = |0.75| < 1.860$$

And we accept (do not reject) $H_o: \mu = 4.0$ at the $\alpha = 10\%$ significance level. (See Figure 8.1-3) The p-value is the two-sided probability of $|T| \ge 0.75$, namely.

 $P - \text{value} = P(|T| \ge 0.75) = 2P(T \ge 0.75)$

With our t tables with eight degrees of freedom , we cannot find this P-value exactly . It is about 0.50 , because

$$P(|T| \ge 0.706) = 2P(T \ge 0.706) = 0.50$$

Remark : In discussing the test of a statistical hypothesis, the word accept H_0 might better be replaced by do not reject H_0 . That is, if, in Example 8.1-3, \overline{X} is close enough to 4.0 so that we accept $\mu = 4.0$, we do not want that acceptance to imply that μ is actually equal to 4.0. We want to say that the data do not deviate enough from $\mu = 4.0$ for us to reject that hypothesis : that is, we do not reject $\mu = 4.0$ with these observed data. With this understanding, we sometimes use accept. and sometimes fail to reject or do not reject, the null hypothesis.

Example : In attempting to control the strength of the wastes discharged into a nearby river, a paper firm has taken a number of measures. Members of the firm believe that they have reduced the oxgen-consuming power of their wastes from a previous mean μ of 500 (measured in parts per million of permanganate). They plan to test H_0 : $\mu = 500$ against H_1 : $\mu < 500$, using readings taken on n=25 consecutive days. If these 25 values can be treated as a random sample, then the critical region, for a significance level of $\alpha = 0.01$, is

$$t = \frac{\bar{X} - 500}{\frac{s}{\sqrt{25}}} \le -t_{0.01}(24) = -2.492$$

The observed values of the sample mean and sample standard deviation wew $\bar{X} = 308.8$ and s = 115.15. since

$$t = \frac{308.8 - 500}{\frac{115.15}{\sqrt{25}}} = -8.30 < -2.492$$

We clearly reject the null hypothesis and accept $H_1: \mu < 500$. Note, however, that although an improvement has been made, there stil might exist the question of whether the improvement is adequate. The one-sided 99% confidence interval for μ , namely

$$\left[0,308.8+2.492\left(\frac{115.25}{\sqrt{25}}\right)\right] = \left[0,366.191.\right],$$

Provides an upper bound for μ and may help the company answer this question.

 ϕ