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CHI-SQUARE GOODNESS-OF-FIT TESTS 

 

We now consider applications of the very important chi-square 

statistic, first proposed by Karl Pearson in 1900. As the reader will 

see, it is a very adaptable test statistic and can be used for many 

different types of tests. In particular, one application allows us to 

test the appropriateness of different probabilistic models.  

 
So that the reader can get some idea as to why Pearson first 
proposed his chi-square statistic, we begin with the binomial case. 
That is, let Y1 be        , where       . According to the 
central limit theorem, 
  

   
      

√          
 

 

has a distribution that is approximately        for large particularly 
when         and             . Thus, it is not surprising that 

          is approximately      . If we let             and 
           , we see that Q1 may be written as  
 

    
         

 

          
 

        
 

   
 

        
 

       
  

 
Since  
 

          
               [      ] 

              
 , 

 
We have  

   
        

 

   
 

        
 

   
 

 
Let us now carefully consider each term in this last expression for 
  . Of course,   is the number of “successes,” and    is the 
expected number of “successes” that is,           . Likewise,    
and     are, respectively, the number and the expected number of 
“failures.” 
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 So each numerator consists of the square of the difference of an 
observed number and an expected number. Note that   can be 
written as  
 

                                         ∑
        

 

   

 
      

and we have seen intuitively that it has an approximate chi-square 
distribution with one degree of freedom. In a sense,    measures 
the “closeness” of the observed numbers to the corresponding 
expected numbers. For example, if the observed values of   and 

  equal their expected values, then the computed    is equal to 
      ; but if they differ much from them, then the computed 
      is relatively Large. 
 
To generalize, we let an experiment have k (instead of only two) 
mutually exclusive and exhaustive outcomes, say             . 

Let          , and thus∑      
   . The experiment is repeated n 

independent times, and we let Yi represent the number of times the 
experiment results in                 . This joint distribution of 
               is a straightforward generalization of the binomial 
distribution, as follows. In considering the joint pmf, we see that 

                                            
 
 

where              are nonnegative integers such that       
        . Note that we do not need to consider   , since, once 

the other k−1 random variables are observed to equal   

            , respectively, we know that 
 

                     
 
From the independence of the trials, the probability of each 
particular arrangement of                       is 
 

  
    

             
   

 
The number of such arrangements is the multinomial coefficient 
 

(
 

          
)  
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Hence, the product of these two expressions gives the joint pmf of 
             
 

                
  

           
  

    
             

   

 
(Recall that                  ) 
 
Pearson then constructed an expression similar to   , which 
involves    and            , that we denote by     , which 

involves             , and                  , namely, 
 

    ∑
        

 

   

 

   

 

 
He argued that      has an approximate chi-square distribution 
with    degrees of freedom in much the same way we argued 

that    is approximately      . We accept Pearson’s conclusion, 
as the proof is beyond the level of this text. Some writers suggest 
that n should be large enough so that                  to be 
certain that the approximating distribution is adequate. This is 
probably good advice for the beginner to follow, although we have 
seen the approximation work very well when                . 
The important thing to guard against is allowing some particular 
    to become so small that the corresponding term in     , 
namely,                 , tends to dominate the others because of 
its small denominator. In any case, it is important to realize that 
     has only an approximate chi-square distribution. We shall 

now show how we can use the fact that Qk−1 is approximately 

        to test hypotheses about probabilities of various 
outcomes. Let an experiment have k mutually exclusive and 
exhaustive outcomes,              . We would like to test whether 
           is equal to a known number                  . That is, 
we shall test the hypothesis  
 

                                  . 
 

In order to test such a hypothesis, we shall take a sample of size 
n; that is, we repeat the experiment n independent times. We tend 
to favor    if the observed number of times that Ai occurred, say, 
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  , and the number of times   was expected to occur if   were 
true, namely,     , are approximately equal. That is, if 
 

      ∑
          

 

    

 

   

 

 
 

is “small,” we tend to favor   . Since the distribution of     is 

approximately         we shall reject   if        
      , 

where    is the desired significance level of the test. 
 

  Example:- 
 
If persons are asked to record a string of random digits, such as 
 

                                                   
 
we usually find that they are reluctant to record the same or even 
the two closest numbers in adjacent positions. And yet, in true 
random-digit generation, the probability of the next digit being the 
same as the preceding one is           , the probability of the 
next being only one away from the preceding (assuming that 0 is 
one away from 9) is           , and the probability of all other 
possibilities is           . We shall test one person’s concept of 
a random sequence by asking her to record a string of 51 digits 
that seems to represent a random-digit generation. Thus, we shall 
test 
 

           
 

  
         

 

  
         

 

  
 

 
The critical region for an          significance level is     
       

            . The sequence of digits was as follows: 
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We went through this listing and observed how many times the 
next digit was the same as or was one away from the preceding 
one: 
 

                 
                Frequency     

    
    Expected Number 
 

 

Same                 0 
 
One way            8           
 
Other                42                               
 

        50(1/10) = 5 
 
        50(2/10) = 10 
 
        50(7/10) = 35 

 

 
Total                 50              
 

 
                 50 

 

 
The computed chi-square statistic is 
 

      

 
 

       

  
 

        

  
                  

     

 
Thus, we would say that this string of 51 digits does not seem to 
be random. 
 
One major disadvantage in the use of the chi-square test is that it 
is a many sided test. That is, the alternative hypothesis is very 
general, and it would be difficult to restrict alternatives to situations 
such as                                (with      ). As a 
matter of fact, some statisticians would probably test H0 against 
this particular alternative    by using a linear function of        and 
  . However, that sort of discussion is beyond the scope of the 
book because it involves knowing more about the distributions of 
linear functions of the dependent random variables        and   . In 
any case, the student who truly recognizes that this chi-square 
statistic tests                           , against all alternatives 
can usually appreciate the fact that it is more difficult to reject    at 
a given significance level    when the chi-square statistic is used 
than it would be if some appropriate “one-sided” test statistic were 
available. 
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 Many experiments yield a set of data, say,            , and the 
experimenter is often interested in determining whether these data 
can be treated as the observed values of a random sample 
             from a given distribution. That is, would this proposed 
distribution be a reasonable probabilistic model for these sample 
items? To see how the chi-square test can help us answer 
questions of this sort, consider a very simple example. 

 

Example:- 
 
Let X denote the number of heads that occur when four coins are 
tossed at random. Under the assumption that the four coins are 
independent and the probability of heads on each coin is 1/2, X is 
        . One hundred repetitions of this experiment resulted in 0, 
1, 2, 3, and 4 heads being observed on 7, 18, 40, 31, and 4 trials, 
respectively. Do these results support the assumptions? That is, is 
         a reasonable model for the distribution of X? To answer 
this, we begin by letting    { }     { }    { }     { }  and 
      { }  If                 when X is         , then  
 

        (
 

 
) (

 

 
)
 

  
 

  
        

 

        (
 

 
) (

 

 
)
 

 
 

  
      

 

     (
 

 
) (

 

 
)
 

  
 

  
       

 
At an approximate          significance level, the null hypothesis 
 

                                 

 
is rejected if the observed value of    is greater than       

      
       If we use the 100 repetitions of this experiment that resulted 
in the observed values                                   
 , of             , respectively, then the computed value of    is 
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Since           , the hypothesis is not rejected. That is, the data 
support the hypothesis that          is a reasonable probabilistic 
model for X. Recall that the mean of a chi-square random variable 
is its number of degrees of freedom. In this example, the mean is 4 
and the observed value of    is 4.47, just a little greater than the 
mean. Thus far, all the hypotheses    tested with the chi-square 
statistic     have been simple ones (i.e., completely specified_ 
namely, in                              , each     has been 
known). This is not always the case, and it frequently happens that 
                are functions of one or more unknown parameters. 
For example, suppose that the hypothesized model for X in 
(Example 2) was      is       ,          . Then 
 

                  
  

            
                                    

  
which is a function of the unknown parameter p. Of course, if  
                                    , is true, then, for large n, 
 

   ∑
          

 

    

 

   

 

 
still has an approximate chi-square distribution with four degrees of 
freedom. The difficulty is that when              are observed to be 
equal to             ,    cannot be computed, since                 
(and hence   ) are functions of the unknown parameter p. 
One way out of the difficulty would be to estimate p from the data 
and then carry out the computations with the use of this estimate. 
It is interesting to note the following: Say the estimation of p is 
carried out by minimizing    with respect to p, yielding p~. This p~ 
is sometimes called a minimum chi-square estimator of p. If, then, 
this p~ is used in   , the statistic    still has an approximate chi-

square distribution, but with only 4 − 1 = 3 degrees of freedom. 

That is, the number of degrees of freedom of the approximating 
chi-square distribution is reduced by one for each parameter 
estimated by the minimum chi-square technique. We accept this 
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result without proof (as it is a rather difficult one). Although we 
have considered it when                  , is a function of only 
one parameter, it holds when there is more than one unknown 
parameter, say, d. Hence, in a more general situation, the test 
would be completed by computing     , using    and the 
estimated                  , to obtain     (i.e.,     is the 
minimized chi-square). This value      would then be compared 

with a critical value   
          In our special case, the 

computed (minimized) chi-square q4 would be compared with 

  
      

There is still one trouble with all of this: It is usually very difficult to 
find minimum chi-square estimators. Hence, most statisticians 
usually use some reasonable method of estimating the 
parameters. (Maximum likelihood is satisfactory.) They then 

compute qk−1, recognizing that it is somewhat larger than the 

minimized chi-square, and compare it with   
         . Note 

that this approach provides a slightly larger probability of rejecting 
   than would the scheme in which the minimized chi-square were 
used because the computed      is larger than the minimum     . 
 
 

CONTINGENCY TABLES 
 
We demonstrate the flexibility of the chi-square test. We first look 
at a method for testing whether two or more multinomial 
distributions are equal, sometimes called a test for homogeneity. 
Then we consider a test for independence of attributes of 
classification. Both of these lead to a similar test statistic. 
Suppose that each of two independent experiments can end in one 
of the k 
mutually exclusive and exhaustive event                  . Let 

                                                   

That is,                     are the probabilities of the events in the 
first experiment, and                      are those associated with the 
second experiment. Let the experiments be repeated   and    
independent times, respectively. Also, let                      be the 
frequencies of                     associated with the n1 independent 
trials of the first experiment. Similarly, let                      be the 
respective frequencies associated with the n2 trials of the second 

experiment. Of course,  ∑        
 
                 From the sampling 

distribution theory corresponding to the basic chi-square test, we 
know that each of 
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∑
           

 

     

 

   

                 

 
has an approximate chi-square distribution with       degrees of 
freedom. Since the two experiments are independent (and thus the 
two chi-square statistics are independent), the sum 
 

∑∑
           

 

     

 

   

 

   

 

 
is approximately chi-square with                    
   degrees of freedom. Usually, the                                are 

unknown, and frequently we wish to test the hypothesis  
                                      

that is,    is the hypothesis that the corresponding probabilities 
associated with the two independent experiments are equal. Under 
  , we can estimate the unknown                                    
by using the relative frequency (   +   ) l (  +   ), i = 1, 2, . . . , k. 
That is, if    
is true, we can say that the two experiments are actually parts of a 
larger one in which    +    is the frequency of the event       
             Note that we have to estimate only the       
probabilities 
       , using 

       
     

                          

 

since the sum of the   probabilities must equal 1. That is, the 
estimator of          is 
 

  
       
     

         
             

     
 

       
     

 

 
Substituting these estimators, we find that 
 

  ∑∑
[    

           

     
]
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has an approximate chi-square distribution with              
            degrees of freedom. Here       is subtracted from 
        because that is the number of estimated parameters. The 
critical region for testing    is of the form 
 

    
       

Example: 
 
To test two methods of instruction, 50 students are selected at 
random from each of two groups. At the end of the instruction 
period, each student is assigned a grade (A, B, C, D, or F) by an 
evaluating team. The data are recorded as follows: 
 

    
Grade 
 

   

 A B C D F Totals 
 

Group I 8 13 16 10 3 50 
       
Group Il 14 9 14 16 7 50 

 

 
Accordingly, if the hypothesis    that the corresponding 
probabilities are equal is true, then the respective estimates of the 
probabilities are 
 

   

   
                     

   

   
      

 
Thus, the estimates of             are 6, 11, 15, 13, and 5, 
respectively. Hence, the computed value of   is 
 

  
      

 
 

          

  
 

          

  
 

        

 
 

        

 

 
         

  
 

          

  
 

          

  
 

        

 

 
 

 
 

 

  
 

 

  
 

 

  
 

 

 
 

 

 
 

 

  
 

 

  
 

 

  
 

 

 
      

 
Now, under      has an approximate chi-square distribution with 
          degrees of freedom, so the        critical region is 
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          =      
     Here             , and hence    is not 

rejected at the 5% significance level. Furthermore, the p-value for 
         is 0.269, which is greater than most significance 
levels. Thus, with these data, we cannot say that there is a 
difference between the two methods of instruction. 
 
It is fairly obvious how this procedure can be extended to testing 
the equality of h independent multinomial distributions. That is, let 

                                                            

and test 
                                         

Repeat the jth experiment    independent times, and let 

                 denote the frequencies of the respective events 

               Now, 

  ∑∑
           

 

     

 

   

 

   

 

 
has an approximate chi-square distribution with        degrees 
of freedom. Under    , we must estimate       probabilities, using 
 

  ̂  
∑    

 
   

∑   
 
   

                            

 
because the estimate of    follows from 
  ̂      ̂    ̂              ̂ We use these estimates to obtain 
 

  ∑∑
        ̂  

 

   ̂ 

 

   

 

   

 

 
which has an approximate chi-square distribution, with its degrees 
of freedom given by                                      Let 
us see how we can use the preceding procedures to test the 
equality 
of two or more independent distributions that are not necessarily 
multinomial. Suppose first that we are given random variables   

and   with distribution functions     and      respectively. It is 
sometimes of interest to test the hypothesis              for all 

 . Previously, we considered tests of            
    

  we will look 

at the two-sample Wilcoxon test. Now we shall assume only 
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that the distributions are independent and of the continuous type. 
We are interested in testing the hypothesis              for 
all   . This hypothesis will be replaced by another one. Partition the 
real line into k mutually disjoint sets                   Let 

                                   
and 
 

                                    
We observe that if           for all   , then           
              We replace hypothesis              with the less 
restrictive hypothesis                            That is, 

 we are now essentially interested in testing the equality of two 
multinomial distributions. 
Let    and    denote the number of independent observations of 
 and  , respectively. For                , let     denote the number 

of these observations of   and  ,        , respectively, that fall 
into a set   . At this point, we proceed to make the test of     as 
described earlier. Of course, if     is rejected at the (approximate) 
significance level   then    is rejected with the same probability. 
However, 
if     is true,    is not necessarily true. Thus, if     is not rejected, 
then we do not reject   . 
In applications, the question of how to select              is 
frequently raised. Obviously, there is no single choice for k or for 
the dividing marks of the partition. But it is interesting to observe 
that the combined sample can be used in this selection 
without upsetting the approximate distribution of  . For example, 
suppose that             . Then we could easily select the 
dividing marks of the partition so that      , and one fourth of the 
combined sample falls into each of the four sets. 

 

Example: 
Select, at random, 20 cars of each of two comparable major-brand 
models. All 40 cars are submitted to accelerated life testing; that is, 
they are driven many miles over very poor roads in a short time, 
and their failure times (in weeks) are recorded as follows: 
 
Brand U:   25   31   20   42   39   19   35   36   44   26 
                 38   31   29   41   43   36   28   31   25   38 
 
Brand V:   28   17   33   25   31   21   16   19   31   27 
                 23   19   25   22   29   32   24   20   34   26 
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If we use 23.5, 28.5, and 34.5 as dividing marks, we note that 
exactly one fourth of the 40 cars fall into each of the resulting four 
sets. Thus, the data can be summarized as follows: 
 

             Totals 

Brand U      2       4       4      10    20 
Brand V      8       6       6       0   20 

 

The estimate of each    is 10/40 = 1/4, which, multiplied by    

      gives 5. Hence, the computed   is 

 

  
        

 
 

        

 
 

        

 
 

         

 
 

        

 

 
        

 
 

        

 
 

        

 
 

  

 
 

                  
     

Also, the p-value is 0.0024. Thus, it seems that the two brands of 

cars have different distributions for the length of life under 

accelerated life testing. Brand  U seems better than brand V. 

Again, it should be clear how this approach can be extended to 

more than two distributions, and this extension will be illustrated in 

the exercises. Now let us suppose that a random experiment 

results in an outcome that can be classified by two different 

attributes, such as height and weight. Assume that the first 

attribute is assigned to one and only one of k mutually exclusive 

and exhaustive event—say                   —and the second 

attribute falls into one and only one of h mutually exclusive and 

exhaustive events—say,                  . Let the probability of         

     be defined by 

     (     )                                         

The random experiment is to be repeated   independent times, 

and     will 
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denote the frequency of the event      . Since there are    such 

events as      , the random variable 

      ∑∑
          

 

    

 

   

 

   

 

has an approximate chi-square distribution with      degrees of 

freedom, provided that   is large. 

Suppose that we wish to test the hypothesis of the independence 

of the   and   attributes, namely, 

    (     )        (  )                                         

Let us denote       by    and       by    ; that is, 

    ∑   

 

   

                                               ∑   

 

   

  (  ) 

Of course, 

  ∑∑   

 

   

 

   

 ∑   

 

   

 ∑   

 

   

 

Then the hypothesis can be formulated as 

                                                               

To test   , we can use      with     replaced by       . But if      

               and                   , are unknown, as they usually 

are in applications, we cannot compute       once the frequencies 

are observed. In such a case, we estimate these unknown 

parameters by 

 ̂   
   

 
                           ∑   

 

   

 

is the observed frequency of                 . Since ∑   
 
    

∑    
 
      we actually estimate only                 
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parameters. So if these estimates are used in      , with     

       then, according to the rule stated earlier, the random variable 

  ∑∑
       

   
 
  
   
 
   

  
   
 
  

   
 
 

 

   

 

   

 

has an approximate chi-square distribution with           

                degrees of freedom, provided that    is true. 

The hypothesis    is rejected if the computed value of this statistic 

exceeds   
 [          ]  

 


