المحاضرة الخامسة

Chapter (2)

The relation between field and circuit theory: Maxwell's equations.

Chapter (2)

The relation between field and circuit theory: Maxwell's equations.

2.1 Introduction :

In circuit theory we deal with circuit element, the voltage (V) across them, and the total current (I) through them . In field theory we deal with the field vectors ($\mathrm{E}, \mathrm{D}, \mathrm{B}, \mathrm{H}$, and J) and their values as a function of position .

Consider a short rod of length (l) and cross-sectional area(A), Thus the voltage difference between the ends of the rod is , from ohms law ,

$$
\begin{equation*}
V=I R . \tag{1}
\end{equation*}
$$

Where (I) is the current through the rod
From ohms law at point

$$
\begin{equation*}
\mathrm{E}=\frac{J}{\sigma} \tag{2}
\end{equation*}
$$

Where $\mathrm{J}=$ conduction current density, Am^{-2}

$$
\sigma=\text { conductivity, } \delta^{-1}
$$

Now, integrating (2) over the length of the rod, we obtain the voltage difference (V) between the ends. That is

$$
\begin{align*}
& \mathrm{V}=\int E \cdot d l=\int \frac{J}{\sigma} \cdot \mathrm{dl} \ldots \ldots .(3) \tag{3}\\
& =\frac{J l}{\sigma}=\mathrm{JA} \frac{l}{\sigma A} \ldots \ldots .(4)
\end{align*}
$$

Where $J A=I=$ current through rod , A
$\mathrm{I} / \sigma \mathrm{A}=\mathrm{R}=$ resistance of rod, Ω
$A=$ cross section area of rod,m^{2}
Thus from (4) we have
$V=I R$ \qquad
Starting with field theory, we have arrived at the circuit relation known as ohm's law.
2.2 Maxwell's equation as generalizations of circuit equations

$$
\begin{equation*}
\nabla \times \mathrm{H}=\mathrm{J}+\frac{\partial D}{\partial t} \tag{1}
\end{equation*}
$$

Equation (1) it is the differential form of Maxwell's equation as derived from Ampers law

$$
\begin{equation*}
\nabla \times \mathrm{E}=-\frac{\partial B}{\partial t} \tag{2}
\end{equation*}
$$

Equation (2) it is the differential form of Maxwell's equation as derived from faradays law

$$
\begin{equation*}
\nabla \cdot \mathrm{D}=\rho \tag{3}
\end{equation*}
$$

Equation (3) is Maxwell's electric field equation as derived from Gauss law in differential form

$$
\begin{equation*}
\nabla \cdot \mathrm{B}=0 \tag{4}
\end{equation*}
$$

Equation (4) is Maxwell's magnetic field equation as derived from Gauss's law
2-3 Maxwell's equation in free space
Maxwell's equation are stated in their general form, for the special case of free space, where the current density (J) and the charge density (ρ) are zero, the equations reduce to a simple form - In integral form the equations are

$$
\begin{gather*}
\oint \cdot H \cdot d l=\int_{s} \frac{\partial D}{\partial t} \cdot \mathrm{ds} \ldots \tag{1}\\
\oint E \cdot d l=-\int_{s} \frac{\partial B}{\partial t} \cdot d s \tag{2}\\
\oint_{S} D \cdot d s=0 \ldots \ldots \ldots \tag{3}\\
\oint_{s} B \cdot d s=0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{4}
\end{gather*}
$$

-In Differential form the equations are

$$
\begin{align*}
& \nabla \times \mathrm{H}=\frac{\partial D}{\partial t} . \tag{5}\\
& \nabla \times \mathrm{E}=-\frac{\partial B}{\partial t} . \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \nabla . D=0 . \tag{7}\\
& \nabla . B=0 . \tag{8}
\end{align*}
$$

2.4 Maxwell's equation for harmonically varying fields

If we assume that the fields vary harmonically with time, Maxwell's equations can be expressed in another special form .

Thus, if (D) varies with time as given by

$$
\begin{equation*}
\mathrm{D}=\mathrm{D}_{0} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial D}{\partial t}=\mathrm{j} \omega \mathrm{D}_{0} \mathrm{e}^{\mathrm{j} \omega t}=\mathrm{j} \omega \mathrm{D} \ldots \ldots \tag{2}
\end{equation*}
$$

When the same assumption is made for B ,

$$
\begin{align*}
& \mathrm{B}=\mathrm{B}_{0} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \\
& \frac{\partial B}{\partial t}=\mathrm{j} \omega \mathrm{~B}_{0} \mathrm{e}^{\mathrm{j} \omega t}=\mathrm{j} \omega \mathrm{~B} \quad, \quad \mathrm{~B}=\mu \mathrm{H} \\
& \frac{\partial B}{\partial t}=\mathrm{j} \omega \mu \mathrm{H} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { (3) } \tag{3}
\end{align*}
$$

Maxwell's equations in integral form reduce to

$$
\begin{gather*}
\oint H \cdot d l=(\sigma+j \omega \varepsilon) \int_{S} E . d s \tag{4}\\
\oint E \cdot d l=-j \omega \mu \int_{s} H \cdot d s \ldots \ldots \ldots . . \tag{5}\\
\oint_{s} D . d s=\int_{S} \rho d V \ldots \ldots \ldots \ldots \ldots \\
\oint_{S} B . d s=0 \ldots \ldots \ldots \ldots \ldots \ldots \tag{7}
\end{gather*}
$$

In differential form they are

$$
\begin{equation*}
\nabla \times \mathrm{H}=(\sigma+\mathrm{j} \omega \varepsilon) \mathrm{E} . \tag{8}
\end{equation*}
$$

$\nabla \times E=-j \omega \mu H$.
$\nabla \quad . \mathrm{D}=\rho$
$\nabla . \mathrm{B}=0$

2.5 Electromagnetic wave in vacuum

The wave equation for E and B
In regions of space, there is on charge or current, Maxwell's equation read

$$
\begin{aligned}
& \nabla \quad . \mathrm{E}=0 \\
& \nabla . \mathrm{B}=0 \\
& \nabla \quad \times \mathrm{E}=-\frac{\partial B}{\partial t} \\
& \nabla \times \mathrm{B}=\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t}
\end{aligned}
$$

Electromagnetic wave equation for the field vector $\overrightarrow{\mathrm{E}}$ By applying the curl to equation(3) we get

$$
\nabla \quad \times \mathrm{E}=-\frac{\partial B}{\partial t} \rightarrow \bigvee \times \mathbf{\nabla} \times \mathbf{\nabla} \times\left(-\frac{\partial B}{\partial t}\right)
$$

$$
\rightarrow \nabla \times \nabla \times E=-(\nabla \times B)
$$

By using the identity : $\nabla \times \nabla \times \mathrm{E}=\nabla(\nabla . \mathrm{E})-\nabla^{2} \mathrm{E}$.

$$
\begin{array}{r}
\nabla\left(\nabla_{.} \mathrm{E}\right)-\nabla^{2} \mathrm{E}=-\frac{\partial}{\partial t}(\nabla \times \mathrm{B}) \longrightarrow \text { but } \nabla^{(\nabla \mathrm{E}=0 \text { from }(1)} \\
\text { and } \bigvee \times \mathrm{B}=\mu_{0} \varepsilon_{0} \frac{\partial \mathrm{~B}}{\partial t}
\end{array}
$$

$\nabla^{2} E=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}$
but $\quad \varepsilon_{0} \mu_{0}=1 / c^{2}$

The relation (1) becomes $\nabla_{\mathrm{E}=1} / c^{2} \frac{\partial^{2} y}{\partial t^{2}}$
Electromagnetic wave equation for the field vector \vec{B} By applying the curl to equation (4) we get

$$
\begin{aligned}
\nabla \times \mathrm{B}=\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t} & \longrightarrow \nabla \times \nabla \times \mathrm{B}=\nabla \times\left(\mu_{0} \varepsilon_{0}\right) \frac{\partial E}{\partial t} \\
& \longrightarrow \nabla \times \nabla \times \mathrm{B}=\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t}(\nabla \times \mathrm{E})
\end{aligned}
$$

By using the identity

$$
\begin{aligned}
& \text { identity } \nabla \times \nabla \times B= \\
& \text {. B })-\nabla^{2} B=\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t}(\nabla
\end{aligned}
$$

$$
\times \mathrm{E}) \longrightarrow \text { but } \bigvee . \mathrm{B}=0
$$ and $\bigvee \times E=-\frac{\partial B}{\partial t}$ from (3)

2
but $\varepsilon_{0} \mu_{0}=\frac{1}{c^{2}}$
the relation between the electric \vec{E} and the magnetic vector \vec{B} is

$$
\begin{equation*}
\mathrm{E}=\mathrm{CB} \tag{5}
\end{equation*}
$$

Where (C) is the speed of light or the speed of electromagnetic wave and equal $C=$ $3 \times 10^{8} \mathrm{ml}$.

EX / A parallel - plate capacitor of radius (R) and separation (d) has a voltage at the center given
by $V=V_{0}$ sinwt . as function of radius (r) (for $r<R$) find (a) the displacement density $J_{d}(r)$
(b) the magnetic field $H(r)$, take $d \ll R$

Sol $/ \oint_{c} H \cdot d l=\int_{s}\left(J_{c}+J_{d}\right) \cdot d s$
$\oint_{C} H \cdot d l=\int_{S}\left(\sigma E+\frac{\partial D}{\partial t}\right) \cdot \mathrm{ds} \longrightarrow \mathrm{J}_{\mathrm{c}}=\sigma \mathrm{E}=0 \longrightarrow \sigma=0$
$\mathrm{a} / \mathrm{J}_{\mathrm{d}}=\int_{S}\left(\varepsilon_{0} \frac{\partial E}{\partial t}\right) \cdot d s$
$\mathrm{J}_{\mathrm{d}}=\varepsilon_{0} \frac{d}{d t}\left(\frac{v_{0} \sin \omega t}{d}\right) \longrightarrow \mathrm{J}_{\mathrm{d}}=\frac{\varepsilon_{0} \omega v_{0} \cos \omega t}{d}$
$\mathrm{b} / \oint_{c} H . d l=\int_{s} J_{d} . d s$
$\mathrm{H} .2 \pi \mathrm{r}=\frac{\varepsilon_{0} \omega v_{0} \cos \omega t}{d} \cdot \mathrm{Tr}^{2}$
$\mathrm{H}=\frac{\varepsilon_{0} \omega v_{0 \cos \omega t . \pi r^{2}}}{2 d . \pi r}$
$\mathrm{H}=\frac{r \varepsilon_{0} v_{0} \cos \omega t}{2 d}$

