المحاضرة السادسة

Chapter (3)

Plane waves in dielectric and conducting media.

الموجات المستوية في الاوساط الموصلة و العازلة.

The phase velocity , or velocity of constant - phase point is given by ω/β . That ω/β has the dimension of velocity is given by

$$\frac{\omega}{\beta} = \frac{3\pi f}{2\pi/\lambda} = \lambda f \dots (1)$$

Where $\omega=2\pi f$

 $\beta = 2\pi/\lambda \implies \text{phase constant}$ الطور ثابت

 $\lambda =$ wave length

f=frequency

and we have the phase velocity

equation (2) gives the phase velocity of a wave in an unbounded medium of permeability (μ) and permittivity (ϵ).

For free space (vacuum) the velocity is a well-known constant by (c) and usually called the

velocity of light . Thus $~~c~=~\frac{1}{\sqrt{\mu_o~\epsilon_o}}~=Mms^{-1}$

The SI unit for the permeability of vacuum is $\mu_o=400~\pi~\text{nH}m^{-1}$

therefore the permittivity of vacuum is

$$\epsilon_{o} = \frac{1}{\mu_{o} c^{2}} = 8.85 \text{ pFm}^{-1}$$

- For other media the phase velocity relative to the velocity of light , or relative phase velocity is

$$P = \frac{\nu}{c} = \frac{\sqrt{\mu_0 \ \epsilon_0}}{\sqrt{\mu \ \epsilon}} = \frac{1}{\sqrt{\mu_r \ \epsilon_r}}(3)$$

Where

 μ_r =relative permeability of medium.

 $\epsilon_r = \mbox{relative permeability of medium.}$

معامل الانكسار . Index of Refraction.

- In optics the index of refraction η is defined as the reciprocal of the relative phase velocity P

That is

$$\eta = \frac{1}{P} = \frac{1}{\nu/c} = \frac{c}{\nu} = \sqrt{\mu_r \ \varepsilon_r} \qquad (4)$$

For nonferrous media (للأوساط غير الحديدية) μ_r is very nearly unity so that

 $\eta = \sqrt{\varepsilon_r}$ (5)

Example 1/ Paraffin has a relative permittivity $\varepsilon_r = 2.1$, Find the index of refraction for paraffin and also the phase velocity of a wave in an unbounded medium of paraffin. solution/ The index of refraction

$$\eta = \sqrt{\varepsilon_r}$$
$$\eta = \sqrt{2.1} = 1.45$$

The phase velocity $\eta = \frac{c}{v} \implies v = \frac{c}{\eta} = \frac{3 \times 10^8}{1.45} = 207 \text{ Mm} \text{s}^{-1}$

Example 2/ Distilled water has the constant ≈ 0 , $~~\epsilon_r=81$, $\mu_r~~=1$, Find η and ν .

solution/
$$\eta = \sqrt{\varepsilon_r} \implies \eta = \sqrt{81} = 9$$

 $\nu = \frac{c}{\eta} = \frac{3 \times 10^8}{9} = 0.111 c = 33.3 \text{ Mms}^{-1}$

سرعة المجموعة . Group velocity المجموعة .

The group velocity give by the relation

$$u = v + \beta \frac{dv}{d\beta} \dots (6)$$

or

Where (u) is the phase velocity of the wave envelope which is usually called the group velocity.

حيث ان (u) سرعة الطور لمغلف الموجه و الذي يدعى بسرعة المجموعة.

- In nondispersive media - للأوساط غير المشتنة : the group velocity is the same as the phase velocity , in free space u=v=c

- In dispersive media the phase and group velocities differ.

- A dispersive media is one in which the phase velocity is a function of the frequency (and hence of the free - space wave length).

-Dispersive media are of two type.

1- Normally dispersive - التشتت العادي : In these media the change in phase velocity with wave length positive that is ($d\nu/d\lambda > 0$) , for these media ($u < \nu$).

2- Anomalously dispersive - التشتت الشاذ : In these media the change in phase velocity with wave length is negative that is ($d\nu/d\lambda < 0$) , for these media ($u > \nu$).

Example / A 1-MHz (300 m wave length) plane wave traveling in a normally dispersive , lossless media has a phase velocity at this frequency of 300 Mms^{-1} , the phase velocity as a function of wave length is give by $\nu = K \sqrt{\lambda}$, Where K is constant . Find the group velocity.

solution/ The group velocity is $u = v - \lambda \frac{dv}{d\lambda}$(1) and we have $v = K \sqrt{\lambda} \Rightarrow v = K \lambda^{\frac{1}{2}} \Rightarrow \frac{dv}{d\lambda} = \frac{1}{2} K \lambda^{-\frac{1}{2}}$(2) Substituted equation (2) in (1) $u = v - \frac{K}{2} \lambda \lambda^{-\frac{1}{2}}$ $u = v - \frac{K}{2} \lambda^{\frac{1}{2}}$ $\because v = K \sqrt{\lambda}$ $u = v - \frac{v}{2}$ $u = v \left(1 - \frac{1}{2}\right) \Rightarrow u = \frac{v}{2} = \frac{300}{2} = 150 \text{ Mms}^{-1}$.

- Intrinsic impedance : refer to the impedance of a plane TEM (transverse electromagnetic wave) travelling through a homogeneous media , the impedance of the wave everywhere in space is equal to the intrinsic impedance , it can also defined as the ratio of the electric field to the magnetic flux density and give by $Z = \frac{E}{H}$ (1)

Where \boldsymbol{Z} is called the intrinsic impedance of the med

- For free space (vacuum)

$$Z = Z_o = \sqrt{\frac{\mu_o}{\epsilon_o}} = 376.731 \approx 120\pi \ \Omega$$
(2)

or the intrinsic impedance is defined as the square root of the ratio permeability of the medium and permittivity of the medium.

Example / If the magnitude of H in a plane wave is 1 $m^{-\Box}$, Find the magnitude of E for a plane wave in free space.

solution/ Z =
$$\frac{E}{H}$$
 \implies E = Z H
= 376.7 × 1 = 376.7 Vm⁻¹.

اذا كانت الموجة مستوية او تسير في وسط متجانس فأن ممانعة الموجة تساوي الممانعة الذاتية و اذا كان الوسط المحيط هو الفراغ فأن ممانعة الموجة تساوى ممانعة الفراغ.

الموجة الثابتة . Two plane waves traveling in opposite direction ; standing wave .

- Standing wave : also called stationary wave combination of two waves moving in opposite direction , each having the same amplitude and frequency.

الموجة الواقفة تدعى بالموجة الثابتة تحصل عند تداخل موجنين متحركتين لهما نفس التردد و السعة متضادتان في الاتجاه.

VSWR definition : The voltage standing wave ratio and define the wave with maximum and minimum electric field intensities . Thus

VSWR = $\frac{E_{max}}{E_{min}} = \frac{E_{o}+E_{1}}{E_{o}-E_{1}}$(1)

 $E_{o}=\mbox{amplitude}$ of incident wave .

 $E_1 = amplitude of reflected wave .$

- When the reflected wave is zero ($E_1 = 0$) the VSWR is unity .

- when the reflected wave is equal to the indicate wave $(E_1 = E_0)$ the VSWR is infinite .

- Hence for all intermediate value of reflected wave , the VSWR lies between 1 and ∞ .

و بالتالي لكل القيم المتوسطة للموجات المنعكسة تقع VSWR بين 1 و∞ .

Example 1/ Find the standing wave ratio of the wave with maximum and minimum electric field intensities of 12 and 4 .

solution/ SWR =
$$\frac{E_{max}}{E_{min}} = \frac{12}{4} = 3$$

Example 2/ Find the standing wave ratio of a wave travelling through the media having intrinsic impedance of 3 and 2.

solution/ SWR = $\frac{Z_1}{Z_2} = \frac{3}{2}$

Hint/ The standing wave ratio is given by the ratio of the intrinsic impedance of medium 1 to the intrinsic impedance of medium 2.

3.6 / Depth of penetration (skin effect) : is a measure of how deep light or any electromagnetic radiation can penetrate into a material . it is defined as the depth at which the intensity of the radiation inside the material falls to 1/e (about 37%) of its original value at (or more properly, just beneath) the surface .

or penetration depth is defined as the distance from the dielectric surface at which the μ_o permeability of free space = $4\pi\,\times\,10^{-7}\,$ H/m .

- The depth of penetration decreases with increasing frequency and give by

- The phase constant (eta) of a wave give by the relation

 $\beta = \frac{1}{\delta}$(2)

- The skin depth of material with attenuation constant give by

 $\delta = \frac{1}{a}$(3)

a = attenuation constant.

- To find the wave length λ_c in the conductor give by the relation

 $\lambda_{\rm c} = 2 \pi \delta$ (4)

Example 1/ Find the skin depth of the wave having of 3 MHz and a velocity 12 $m/s\,$.

solution/ $V~=~f~\delta \Longrightarrow~\delta = V/f~=~\frac{12}{3\times 10^6} = 4~\mu m$.

Example 2/ Find the effective skin resistance of a material with conductivity 120 and skin depth of 2 μ m.

solution/ The effective skin resistance given by

$$R_{\delta} \; = \; \frac{1}{\delta \; \sigma} = \; \frac{1}{120 \times 2 \times 10^{-6}} = 4.16 \; \text{K}\Omega \; \; .$$

Example 3/ The attenuation constant is 0.5 unit , Find the skin depth .

solution/ $\delta=\frac{1}{a}\,=\,\frac{1}{0.5}\,=\,2$ units $\,.$

Example 4/ Calculate the phase constant of a wave with skin depth of 2.5 unit . solution/ $\delta = \frac{1}{\beta} \implies \beta = \frac{1}{\delta} = \frac{1}{25} = \frac{2}{5}$ unit .

- In the physical sciences.

الاسترخاء : العودة بالنظام المضطرب الى حالة التوازن.

- Relaxation usually means the return of perturbed system into equilibrium .
- The simplest theoretical description of relaxation as a function of time (t) is an exponential

law
$$exp(-t/\tau)$$
.

$$\begin{split} V(t) &= V_0 \; e^{-t/RC} \\ V(t) &= V_0 \; e^{-t/\tau} \Longrightarrow \; \tau = RC \end{split}$$

- في دائرة تحتوي على متسعة و مقاومة يكون الجهد بالشكل التالي
- τ زمن الاسترخاء للدائرة الكهربائية او ثابت المتسعة زمن الاسترخاء : هو الزمن اللازم لهبوط قيمة السعة الى 1/e من قيمتها الاصلية. حيث e يمثل اساس اللوغاريتم الطبيعي و يساوي (2.718) اي ان الزمن اللازم لهبوط قيمة السعة من (c) الى 0.368 تمثل زمن الاسترخاء.

Example 1/ For a conductor such as copper , for which $\sigma = 58 \ \mu \upsilon m^{-1}$ and $\epsilon = 8.85 \ PFm^{-1}$. Find the time τ_r .

solution/
$$\tau_r = \frac{\epsilon}{\sigma} = \frac{8.85 \times 10^{-12}}{58 \times 10^6} = 1.5 \times 10^{-19} \, \mathrm{s}$$
.

Example 2/ Find the time constant of a capacitor with capacitance of $2\mu f~$ having an

internal resistance of $4\mu\Omega$.

solution/ $\tau=RC$.

 $\tau = 4 \times 10^6 \times 2 \times 10^{-6} = 8$ second

* To derive the Relaxation Time The continuity relation between current density and charge density is $\nabla \cdot J = -\frac{\partial \rho}{\partial t}$(1) From Maxwell's equation $\nabla \cdot E = \frac{\rho}{\epsilon}$(2) But $J = \sigma E$, so that(2) becomes $\nabla \cdot J = \frac{\rho \sigma}{\epsilon}$(3) From (1) and (3) it follows that $\frac{\partial \rho}{\partial t} + \frac{\sigma}{\epsilon} \rho = 0$(4) A solution of this equation is $\rho = \rho_0 e^{-(\sigma/\epsilon)t}$(5) let $\tau_r = \frac{\epsilon}{\sigma}$(6) τ_r has the dimension time, At - t = 0, $\rho = \rho_0$, which is the initial charge density. when $= \tau_r$, the equation (5) becomes $\rho = \rho_0 e^{-(t/\tau_r)}$ $\rho = \rho_0 e^{-1} = \rho \frac{1}{e}$(7)

thus τ_r is the time required for the charge density to decrease to $\frac{1}{e}$ of the initial value, the quantity (τ_r) is called the ((Relaxation time)).

3.8 / Energy relation in a traveling wave .

The energy density at a point in an electric field is

$$W_{e} = \frac{1}{2} \epsilon E^{2}$$
(1)

The energy density at a point in magnetic field is

$$W_{\rm m} = \frac{1}{2} \ \mu \ {\rm H}^2$$
(2)

In a traveling wave in an unbounded , lossless medium

Substituting for (H) from (3) in (2) we get

$$W_{\rm m} = \frac{1}{2} \ \mu \ {\rm H}^2 = \frac{1}{2} \ \epsilon \ {\rm E}^2 = \ W_{\rm e} \ \ldots$$
(4)

Thus , the electric and magnetic energy densities in a plan traveling wave are equal , and the total energy (W) is the sum of the electric and magnetic energies , thus

$$W = W_e + W_m$$

$$W = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \mu H^2$$

$$W = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \varepsilon E^2 \qquad (From 4)$$

$$\therefore W = \varepsilon E^2 + \mu H^2 \qquad (J m^{-3})$$