UNIT: 1 SOME BASIC CONCEPTS IN CHEMISTRY

Important Points

[A] Important formulae:

1. No.of moles =
$$\frac{mass}{Molar \ mass}$$

2. No.of moles of gas =
$$\frac{Volume\ at\ STP}{22.4}$$

3. No.of moles of Particles =
$$\frac{No.of\ Particles}{6.022 \times 10^{23}}$$

4. No. of moles of solute =
$$Molarity \times Vol(L)$$

5. Eq. wt. of a salt =
$$\frac{M.W.of\ salt}{Total + ve\ charge\ of\ metal\ ion}$$

6. Eq. wt.of element =
$$\frac{Atomic Weight}{Valency}$$

7.
$$Avg. at. mass = \frac{m \times a + n \times b}{m + n}$$

where, a + b are atomic masses and m + n are precentage.

8. % of element in compound =
$$=\frac{n (at \ mass \ of \ element)}{M.W. \ of \ compound} \times 100$$

where, n= No. of atoms of that element

9.
$$Molarity = \frac{w \times 1000}{M.W. \times V(ml)}$$

10. Normality =
$$\frac{w \times 1000}{E.W. \times V(ml)}$$

11.
$$Molality = \frac{w \times 1000}{MW \times Wo(g)}$$

Wo = Weight of solvent

12. *Mole fraction*
$$(X) = \frac{n}{n+N}$$

13.
$$\%W/W = \frac{W \times 100}{W + Wo}$$

14.
$$ppm = \frac{weight(vol) \text{ of solute} \times 10^6}{weight(vol) \text{ of solution}}$$

- 15. Molecalar weight = $2 \times V.D$.
- 16. Eq.wt of metal = $\frac{Wt. of metal}{wt of H_2 displaced} \times 1.008$

17. Eq.wt of metal =
$$\frac{Wt. of metal \times 11200}{Vol of H_2 displaced at STP (mL)}$$

18.
$$Eq.wt \ of \ metal = \frac{Wt. \ of \ metal \times 35.5}{Wt \ of \ Chlorine \ combined}$$

19.
$$Eq.wt \ of \ metal = \frac{Wt. \ of \ metal \times 11200}{Vol \ of \ Cl_2 \ combined \ at \ STP \ (mL)}$$

20. Eq.wt of metal =
$$\frac{Wt. of metal \times 8}{Wt of oxygen combined}$$

21.
$$Eq.wt \ of \ metal = \frac{Wt. \ of \ metal \times 5600}{Vol \ of \ O, \ displaced \ at \ STP \ (mL)}$$

22.
$$Molority = \frac{\%W/W \times density \times 10}{Molecular\ weight}$$

23.
$$M_1 V_1 = M_2 V_2$$
 (Molarity equation)

24.
$$N_1 V_1 = N_2 V_2$$
 (Normality equation)

25.
$$n = \frac{Molecular\ weight}{Empirical\ formula\ Weight}$$

26.
$${}^{0}F = \frac{9}{5}({}^{0}C) + 32$$

27.
$$K = {}^{0}C + 273.15$$

28.
$$1 L = 1 dm^3, 1 mL = 1 cm^3$$

[B] Important Facts:

- 1. Antoine Lavoisier Law of conservation of mass
- 2. Joseph proust Law of definite proportions
- 3. John Dalton Law of Multiple proportions
- 4. Richter Law of combining weights.
- 5. Gay Lussac Law of combining Volumes.
- 6. $1 \text{ amu} = 1.6605 \text{ x } 10^{-24} \text{ gram}$

7. Mass of
$$\overset{12}{C}$$
 atom = 1.9926 × 10⁻²³ gram

8. Avogadro number
$$(N_A) = 6.022 \times 10^{23}$$

[c] Precision and Accuracy.

The term precision refers for the closeness of the set of values obtained form identical measurements of a quantity.

Accuracy refers to the closeness of a single measurement to its true value.

Let us take an example to illustrute. this. Three students were asked to determine the mass of a piece of metal where mass is known to be 0.520g. Data obtained by each Student are recorded in table below

	mesurements in g.					
	1	2	3	Average		
Student A			.0509	I		
Student B	0.516	0.515	.0514	0.515		
Student C	0.521	0.500	.0520	0.520		

The data for student A are neither, precise nor accurate. The data for student B are precise but not accurate. The data for student C are both precise and accurate.

التحضير رقم (1): تحضير المحاليل القياسية بالمولارية و العيارية

أولا: تحضير محاليل قياسية بالمولارية

1. الأساس النظرى:

تعبر المولارية عن عدد المولات المذابة في واحد لتر من المحلول و حسب حالة المادة (صلبة أو سائلة) المستعملة نطبق القوانين التالية:

1 ـ 1 تحضير محلول مولاري من مادة صلبة:

Weight = Molarity × MW ×
$$\frac{V (ml)}{1000}$$
 (1)

علما بأن:

Weight : الوزن ، Wolarity : المولارية ، MW: الوزن الجزيئي و V : حجم المحلول.

مثال: احسب الوزن اللازم لتحضير محلول من كلوريد البوتاسيوم تركيزه 0.1 مولار و حجمه 100 مل. الحل:

من الجدول الدوري (الملحق 1) نجد بأن الأوزان الذرية لكل من البوتاسيوم و الكلور هي 39.10 و 35.45 على التوالي.

الوزن الجزيئي لـ 74.55 = 35.45 + 39.10 = KCl جرام/مول

لكي نحسب الوزن، نطبق القانون رقم (1):

Weight =
$$0.1 \times 74.55 \times \frac{100}{1000} = 0.7455$$
 g

Example:

A sample of 21.4 g of $CaCl_2$ (M.m = 111.0 g/mol) is dissolved in 450.0 mL of aqueous solution. Calculate the molarity of $CaCl_2$ in solution:

70.4

Solution:

$$n_{CaCl_2} = \frac{m}{Mw} = \frac{21.4}{111} = 0.193 \,\text{mol}$$

$$V = 450 \text{ ml} = 0.45 \text{L}$$

$$M = \frac{n}{v}$$

$$M = \frac{0.193}{0.45} = 0.428M$$

Example

A sample of iron ore weighing 0.2792 g was dissolved in diluted acid solution and all the Fe(II) was converted to Fe(III) ions. The solution required 23.30 mL of 0.0194 M $K_2Cr_2O_7$ for titration. Calculate the percent by mass of iron (Mr 55.85) in the ore. "المادة الخام"