Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Theorem (1): (Properties of vector arithmetic):

(Algebraic properties of vectors)

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in 2-or 3-space and k and c are scalars (real numbers), then the following relationships holds.
A) Addition properties:
a) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (Commutative).
b) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (Associative).
c) $\mathbf{u}+0=0+\mathbf{u}=\mathbf{u}$ (Additive identity).
d) $\mathbf{u}+(-\mathbf{u})=0$ (Additive inverse).
B) Scalar multiplication properties:
e) $k(c \mathbf{u})=(k c) \mathbf{u}$ (Associative property).
f) $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ (Distributive property).
g) $(k+c) \mathbf{u}=k \mathbf{u}+c \mathbf{u}$ (Distributive property).
h) $\mathbf{1} \mathbf{u}=\mathbf{u} \quad$ (Multiplicative identity).

Proof of part (b): $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$. (Analytic).
If \mathbf{u}, \mathbf{v}, and \mathbf{w} are three vectors in 3 -space such that $\mathbf{u}=\left\langle u_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\rangle, \mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}\right.$, $w_{2}, w_{3}>$, then:

$$
\begin{aligned}
(\mathbf{u}+\mathbf{v})+\mathbf{w} & =\left[\left\langle u_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\rangle+\left\langle v_{1}, v_{2}, v_{3}\right\rangle\right]+\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& =\left\langle u_{1}+v_{1}, \mathbf{u}_{2}+v_{2}, \mathbf{u}_{3}+v_{3}\right\rangle+\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& =\left\langle\left(u_{1}+v_{1}\right)+w_{1},\left(\mathbf{u}_{2}+v_{2}\right)+w_{2},\left(\mathbf{u}_{3}+v_{3}\right)+w_{3}\right\rangle \\
& =\left\langle u_{1}+\left(v_{1}+w_{1}\right), \mathbf{u}_{2}+\left(v_{2}+w_{2}\right), \mathbf{u}_{3}+\left(v_{3}+w_{3}\right)\right\rangle \\
& =\left\langle u_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\rangle+\left\langle\left(v_{1}+w_{1}\right),\left(v_{2}+w_{2}\right),\left(v_{3}+w_{3}\right)\right\rangle \\
& =\mathbf{u}+(\mathbf{v}+\mathbf{w}) .
\end{aligned}
$$

Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Similarly, for the proof in 2-space.

Now we shall proof this part geometrically.
If the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} are represented by $\overrightarrow{P Q}, \overrightarrow{Q R}$, and $\overrightarrow{R S}$ as shown in (figure 19), then:

$$
\begin{aligned}
& \mathbf{v}+\mathbf{w}=\overrightarrow{Q S} \text { and } \mathbf{u}+(\mathbf{v}+\mathbf{w})=\overrightarrow{P S},(\text { Vector addition }) . \\
& \mathbf{u}+\mathbf{v}=\overrightarrow{P R} \text { and }(\mathbf{u}+\mathbf{v})+\mathbf{w}=\overrightarrow{P S}, \quad(\text { Vector addition }) .
\end{aligned}
$$

Thus, $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.

Figure 19

The vectors $\mathbf{u}+(\mathbf{v}+\mathbf{w})$ and $(\mathbf{u}+\mathbf{v})+\mathbf{w}$ are equal.
In figure 19, we note that the symbol $\mathbf{u}+\mathbf{v}+\mathbf{w}$ is clear since the same sum is obtained no matter where parentheses are inserted and if the vectors \mathbf{u}, \mathbf{v} and \mathbf{w} are placed "tail-to-tip" then the $\operatorname{sum} \mathbf{u}+\mathbf{v}+\mathbf{w}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{w}.

Magnitude (length) or norm of a vector in 3-space:

How to visualize the norm geometrically in 3-space?
Previously we defined the magnitude or norm of the vector v in 2-space that is denoted by $\|\mathbf{v}\|$ and we said the same method would be to define the magnitude of the vector in 3-space and for higher- dimensional vector space.
If $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is any vector in 3-space as shown in (figure 20). Using two application of the theorem of Pythagoras, we obtain:

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

$$
\begin{aligned}
& \|\mathbf{v}\|^{2}=(O R)^{2}+(R P)^{2}=(O Q)^{2}+(O S)^{2}+(R P)^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2} \\
& \|\mathbf{v}\|=\sqrt{\left(v_{1}\right)^{2}+\left(v_{2}\right)^{2}+\left(v_{3}\right)^{2}} .
\end{aligned}
$$

Figure 20

We know if the magnitude (length) or norm of the vector equal 1, then the vector is called a unit vector.

Note: If \mathbf{v} is any nonzero vector, then for any scalar $k,\|k \mathbf{v}\|=|k|\|\mathbf{v}\|=k\|\mathbf{v}\|$.
Let $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is any vector in 2 -space, then:
$k \mathbf{v}=k\left\langle v_{1}, v_{2}\right\rangle=\left\langle k v_{1}, k v_{2}\right\rangle ;$
Thus, $\|k \mathbf{v}\|=\sqrt{\left(k v_{1}\right)^{2}+\left(k v_{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{k^{2} v_{1}^{2}+k^{2} v_{2}^{2}} \\
& =\sqrt{k^{2}\left(v_{1}^{2}+v_{2}^{2}\right)} \\
= & |k| \sqrt{v_{1}^{2}+v_{2}^{2}} \\
= & |k|\|\mathbf{v}\| \\
= & k\|\mathbf{v}\| .
\end{aligned}
$$

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied Mathematics

lectures
Subject: Vector analysis.

The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Example (12): If $\mathbf{u}=\langle 4,2,-4\rangle$, find the scalar k such that $\|k \mathbf{v}\|=6$.
Solution:

$$
\begin{aligned}
\|k \mathbf{v}\| & =k\|\mathbf{v}\|=6, \mathbf{v}=<4,2,-4> \\
\|\mathbf{v}\| & =\sqrt{(4)^{2}+(2)^{2}+(-4)^{2}} ; \\
& =\sqrt{(16+4+16} \\
& =\sqrt{36} \\
& =6 \longrightarrow 6 k=6 \longrightarrow k=1
\end{aligned}
$$

Check: $k\|\mathbf{v}\|=1(6)=6$.
Example (13): If \mathbf{v} is any nonzero vector, then $\frac{1}{\|\mathbf{v}\|} \mathbf{v}$ is a unit vector. (Show that).
Proof:
The magnitude of a unit vector is 1 , thus we must prove that the magnitude of $\frac{1}{\|\mathbf{v}\|} \mathbf{v}$ is $1\left(\left\|\frac{1}{\|\mathbf{V}\|} \mathbf{v}\right\|=1\right)$.

Since $\frac{1}{\|\mathbf{v}\|}$ is a scalar, then
$\left\|\frac{1}{\|\mathbf{v}\|} \mathbf{v}\right\|=\left|\frac{1}{\|\mathbf{v}\|}\right|\|\mathbf{v}\|=\frac{1}{\|\mathbf{v}\|}\|\mathbf{v}\|=1$.
$\frac{1}{\|\mathbf{v}\|} \mathbf{v}$ is a unit vector.
Example (14): Find a unit vector that has the same direction as the vector $\mathbf{v}=\langle 3,4\rangle$.
Solution:

$$
\begin{aligned}
& \mathbf{U}=\frac{1}{\|\mathbf{v}\|} \mathbf{v},\|\mathbf{v}\|=\sqrt{(3)^{2}+(4)^{2}}=5 \\
& \mathbf{U}=\frac{1}{5}\langle 3,4\rangle
\end{aligned}
$$

Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim
$\mathbf{U}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$ the unit vector. (We can check that: $\|\mathbf{U}\|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=1$).
Note: If we want to find the unit vector that has the opposite direction for any vector like \mathbf{v}, this means finding the unit vector for the vector $(-\mathbf{v})$.

Example (15): Find the unit vector that has the opposite direction of the vector $\mathbf{v}=<-4,2,4>$.
(Homework).
Example (16): Find the unit vector of the vector $\mathbf{v}=\langle 5,-2,1\rangle$ when the angle between these two vectors is zero. (Homework).

The distance d between two points in 2-space or 3-space:

If $P_{l}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ are two points in 3-space as shown in (figure 21), then the distance d between them is the norm (magnitude, length) of the vector $\overrightarrow{P_{1} P_{2}}$, thus we must find the coordinates of this vector, then determine its magnitude or norm (the distance), as follows:

$$
\begin{gathered}
\overrightarrow{P_{1} P_{2}}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right) ; \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
\end{gathered}
$$

Similarly, for the vectors in 2-space, such that:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

when $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ are two points in 2-space.

Figure 21
The distance between P_{1} and P_{2} is the norm of $\overrightarrow{P_{1} P_{2}}$

Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (17): find the norm (magnitude) of the vector $\mathbf{v}=\langle 4,-1,2\rangle$, and find the distance d between the points $P_{l}=(3,-2,3)$ and $P_{2}=(5,-6,-5)$. (Homework).

Dot product of vectors:

Angle between vectors:

If \mathbf{u} and \mathbf{v} are two nonzero vectors in 2- or 3-space, and they have the same initial point, then the angle between \mathbf{u} and \mathbf{v} is denoted by θ and satisfies $0 \leq \theta \leq \pi$, as shown in (figure 22).

Acute angle

Right angle

Obtuse angle

Straight angle

Obtuse angle

Figure 22
The angle θ between \mathbf{u} and \mathbf{v} satisfies $0 \leq \theta \leq \pi$

Definition (11): (dot product or Euclidean inner product of vectors):

If \mathbf{u} and \mathbf{v} are two nonzero vectors in 2 - or 3 -space(or R^{n}-space) and θ is the angle between them, then the dot product or Euclidean inner product $\mathbf{u} . \mathbf{v}$ is defined by:
$\mathbf{u} \cdot \mathbf{v}=\left\{\begin{array}{cc}\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \text { if } \mathbf{u} \neq 0 \text { and } \mathbf{v} \neq 0 . \\ 0 & \text { if } \mathbf{u}=0 \text { or } \mathbf{v}=0 .\end{array}\right.$
The result of $\mathbf{u} \cdot \mathbf{v}$ is a scalar.

Example (18): If $\mathbf{u}=\langle 6,-2,-3\rangle$ and $\mathbf{v}=\langle 1,1,1\rangle$, then find $\mathbf{u} \cdot \mathbf{v}$ when the angle θ between them is 85°.

Solution:
$\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

$$
\begin{aligned}
&\|\mathbf{u}\|=\sqrt{6^{2}+(-2)^{2}+(-3)^{2}} \\
&=\sqrt{49} \\
&\|\mathbf{v}\|=\sqrt{1^{2}+1^{2}+1^{2}} \\
&=\sqrt{3} \\
& \rightarrow \quad \mathbf{u} \cdot \mathbf{v}=\sqrt{49} \sqrt{3} \cos 85^{\circ} \\
&=\sqrt{147} \frac{1}{\sqrt{147}} \\
&=1 .
\end{aligned}
$$

Example (19): Find the dot product of the vectors $\mathbf{u}=\langle 0,0,1\rangle$ and $\mathbf{v}=\langle 0,2,2\rangle$ if the angle θ between them is 45°. (Homework).

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts,1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

