

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Theorem (3): (Properties of the dot product):

If **u**, **v** and **w** are three vectors in 2-or 3-space, and let *k* is any scalar then:

- a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (Commutative).
- b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (Distributive property).
- c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$ (Associative).
- d) $\mathbf{v} \cdot \mathbf{v} > 0$ if $\mathbf{v} \neq 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if $\mathbf{v} = 0$.

Proof (a):

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are tow vectors in 3-space then:

u. **v**= $(u_1v_1 + u_2v_2 + u_3v_3)$

= $(v_1u_1 + v_2u_2 + v_3u_3)$ (commutative property of multiplication)

= **v** . **u**

Proof (b):

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ are three vectors in 3-space then:

u. $(\mathbf{v} + \mathbf{w}) = \langle u_1, u_2, u_3 \rangle$. $\langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$

$$= u_1(v_1 + w_1) + u_2(v_2 + w_2) + u_3(v_3 + w_3)$$

= $u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + u_3v_3 + u_3w_3$
= $(u_1v_1 + u_2v_2 + u_3v_3) + (u_1w_1 + u_2w_2 + u_3w_3)$
= $\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Proof (c):

$$k (\mathbf{u} \cdot \mathbf{v}) = k(u_1v_1 + u_2v_2 + u_3v_3)$$

= $(ku_1)v_1 + (ku_2)v_2 + (ku_3)v_3$
= $(k\mathbf{u}) \cdot \mathbf{v}$, and similarly for $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$. (Homework part (d)).

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Parallel vectors:

We previously said that the two nonzero vectors are **parallel** if they have the same direction and the angle between these parallel vectors is zero degree, and if the angle between them is 180° then they are parallel and point in the **opposite direction**.

1- Two nonzero vectors in 2-or 3-space are **parallel** if they are scalar multiples of one another.

If **u** and **v** are two nonzero vectors and $\mathbf{u} = k\mathbf{v}$ (*k* any scalar), then **u** and **v** are **parallel**. For example: if $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, then they are parallel if and only if:

 $\mathbf{u} = k\mathbf{v} = k \langle v_1, v_2, v_3 \rangle = \langle kv_1, kv_2, kv_3 \rangle.$

2- Two nonzero vectors are parallel if and only if $|\mathbf{u}, \mathbf{v}| = ||\mathbf{u}|| ||\mathbf{v}||$ and they have the same direction if and only if $\mathbf{u}, \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}||$.

That means they are parallel if $\cos \theta = \overline{\pm 1}$ ($\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$) and they have the same direction if $\cos \theta = 1$ ($\cos \theta = 1 \rightarrow \theta = 0$, and $\cos \theta = -1 \rightarrow \theta = 180^{\circ}$).

Example (29): Determine which of the following vectors are parallel to vector $\mathbf{v} = \langle -3, -2, 5 \rangle$.

a) $\mathbf{u} = \langle 6, 4, -10 \rangle;$ b) $\mathbf{w} = \langle \frac{-3}{2}, -1, \frac{-5}{2} \rangle;$ c) $\mathbf{d} = \langle 2, \frac{4}{2}, \frac{-10}{2} \rangle.$

Solution:

a) If $\mathbf{v} = k\mathbf{u}$ then, they are parallel.

<-3, -2, 5>= k<6, 4, -10>= <6k, 4k, -10k> $-3= 6k \rightarrow k = -\frac{1}{2}, -2= 4k \rightarrow k = -\frac{1}{2}, 5= -10k \rightarrow k = -\frac{1}{2}$ $k\mathbf{u} = -\frac{1}{2}<6, 4, -10>= <-3, -2, 5>= \mathbf{v}$, so the two vectors are parallel. <u>We will obtain the same result if we take</u> $\mathbf{u} = k\mathbf{v}$, but k = -2. (check this).

b) If $\mathbf{v} = k\mathbf{w}$, then they are parallel.

$$<-3, -2, 5>= k < \frac{-3}{2}, -1, \frac{-5}{2} >= < \frac{-3}{2} k, -1k, \frac{-5}{2} k >$$
$$-3= \frac{-3}{2} k \to k = 2, -2 = -1k \to k = 2, 5= \frac{-5}{2} k \to k = -2.$$

k is not equal in all three cases, so the two vectors are not parallel.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Now, if we use the second method:

$$\|\mathbf{v}\| = \sqrt{(-3)^2 + (-2)^2 + (5)^2} = \sqrt{38};$$

$$\|\mathbf{w}\| = \sqrt{(\frac{-3}{2})^2 + (-1)^2 + (\frac{-5}{2})^2} = \frac{\sqrt{38}}{2} \to \|\mathbf{v}\| \|\mathbf{w}\| = 19;$$

$$\mathbf{v} \cdot \mathbf{w} = \langle -3, -2, 5 \rangle \cdot \langle \frac{-3}{2}, -1, \frac{-5}{2} \rangle$$

$$= \frac{9}{2} + 2 - \frac{25}{2}$$

$$= -6$$

 $|\mathbf{v}, \mathbf{w}| \neq ||\mathbf{v}|| ||\mathbf{w}||$, so the two vectors are not parallel. (Homework part (c)).

Example (30): Find a vector **v** of length 2 units which is parallel and in same direction to $\mathbf{u} = \langle 2, -2, 1 \rangle$.

Solution: (first method).

We use the formula of unit vector to find the components of the vector \mathbf{v} .

$$\mathbf{U} = \frac{\mathbf{v}}{\|\mathbf{v}\|} \rightarrow \mathbf{v} = \mathbf{U} \|\mathbf{v}\|, \|\mathbf{v}\| = 2, \text{ we need to find } \mathbf{U}.$$

 \mathbf{v} is parallel to \mathbf{u} and with the same direction as \mathbf{u} , thus we find the unit vector from the vector \mathbf{u} .

$$\|\mathbf{u}\| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{9} = 3$$
$$\mathbf{U} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\langle 2, -2, 1 \rangle}{3} = \langle \frac{2}{3}, \frac{-2}{3}, \frac{1}{3} \rangle$$

v = U ||v||

$$=2<\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}>=<\frac{4}{3}, \frac{-4}{3}, \frac{2}{3}>$$
 and we can check this by find $||\mathbf{v}||=2$.

Second method: Two vectors are parallel if they are scalar multiples of one another.

$$\mathbf{v} = k\mathbf{u},$$

= k<2, -2, 1>= <2k, -2k, k>, $\|\mathbf{v}\| = 2;$
 $\|\mathbf{v}\| = \sqrt{(2k)^2 + (-2k)^2 + k^2}$
= $\sqrt{9k^2}$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

$$= 3k \rightarrow ||\mathbf{v}|| = 3 \rightarrow 2 = 3k \rightarrow k = \frac{2}{3}$$

So $\mathbf{v} = \langle \frac{4}{3}, \frac{-4}{3}, \frac{2}{3} \rangle$.

Example (31): find the components of the vector **v**, that has the same direction as $\mathbf{u} = \langle 3, 4 \rangle$, and $\|\mathbf{v}\| = 12$. (Homework).

Example (32): If $||\mathbf{v}|| = 10$, and $\mathbf{u} = 8\mathbf{i} + 15\mathbf{j}$, find the components of the vector \mathbf{v} if it has the same direction as \mathbf{u} . (homework).

How to find the magnitude and direction of a given vector?

Example (33): Find the magnitude and direction angle of the vector $\mathbf{v} = -2\mathbf{i} + 5\mathbf{j}$.

Solution:

$$\|\mathbf{v}\| = \sqrt{(-2)^2 + 5^2}$$
$$= \sqrt{29}$$
 the magnitude.

In (figure 29) we note that we must find the angle θ_1 (from *X*-axis to the vector), so first we must find the angle θ_2 (from -X-axis to the vector).

Example (34): Find the components of the vector **v** if $||\mathbf{v}|| = 10$ and $\theta = 40^{\circ}$.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Solution:

Let $\mathbf{v} = \langle v_1, v_2 \rangle$ as shown in (**figure 30**), we must find v_1 and v_2 .

Thus $\mathbf{v} = \langle 7.66, 6.427 \rangle$ or $\mathbf{v} = 7.66\mathbf{i} + 6.427\mathbf{j}$ (as linear combination form).

Example (35): Find a vector **v** in linear combination form if $||\mathbf{v}|| = 25$ and $\theta = 146^{\circ}$. (Homework). (with drawing the figure).

Example (36): determine whether the two nonzero vectors $\mathbf{v} = -3\mathbf{i} - 4\mathbf{j}$ and $\mathbf{u} = 6\mathbf{i} + 8\mathbf{j}$, are parallel and have the same direction. (Homework).

Example (37): Find the magnitude and direction of the vector $\mathbf{v} = 3(\cos 30\mathbf{i} + \sin 30\mathbf{j})$. (Homework).

Example (38): Determine whether each pair of the following vectors are orthogonal, parallel or neither.

 $u = \langle 1, 0, 0, 1 \rangle$, $v = \langle 0, 1, 1, 0 \rangle$ and $w = \langle 3, 0, 0, 3 \rangle$.

Solution:

 $\mathbf{u} \cdot \mathbf{v} = 0 \rightarrow \mathbf{u}$ and \mathbf{v} are orthogonal.

 $\mathbf{v} \cdot \mathbf{w} = 0 \rightarrow \mathbf{v}$ and \mathbf{w} are orthogonal.

u . **w**= $6 \rightarrow$ **u** and **w** are not orthogonal.

Now we check whether the two vectors **u** and **w** are parallel.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

 $\mathbf{u} \cdot \mathbf{w} = 6$, $\|\mathbf{u}\| = \sqrt{2}$, $\|\mathbf{w}\| = \sqrt{18}$, $\|\mathbf{u}\| \|\mathbf{w}\| = 6$;

Since $\mathbf{u} \cdot \mathbf{w} = \|\mathbf{u}\| \|\mathbf{w}\| \rightarrow \mathbf{u}$ and \mathbf{w} are parallel and in the same direction.

Note: If $\mathbf{u} \cdot \mathbf{w} = -6$ then $|\mathbf{u} \cdot \mathbf{w}| = ||\mathbf{u}|| ||\mathbf{w}||$ and the vectors \mathbf{u} and \mathbf{w} are parallel but not in the same direction.

Example (39): Determine whether each pair of the following vectors are orthogonal, parallel (in the same direction) or neither. (**a**, **b**, **c**, and **e Homework**).

a) v= <-5, 3, 7>, u= <6, -8, 2>;
b) v= <4, 6>, u= <-3, 2>;

- c) v = -i + 2j + 5k, u = 3i + 4j k;
- d) v = 2i + 6j 4k, u = -3i 9j + 6k;
- e) v = -3i 4j, u = 6i + 8j.

Solution(d):

$$\mathbf{v} \cdot \mathbf{u} = (2)(-3) + (6)(-9) + (-4)(6)$$

= -84;

$$\|\mathbf{v}\| = \sqrt{56}, \|\mathbf{u}\| = \sqrt{126} \rightarrow \|\mathbf{v}\| \|\mathbf{u}\| = 84$$

Since $|\mathbf{v}, \mathbf{u}| = ||\mathbf{v}|| ||\mathbf{u}|| \rightarrow$ the vectors are parallel but are not in the same direction.

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.

2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts, 1985.

3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.

4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.