Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Theorem (3): (Properties of the dot product):

If \mathbf{u}, \mathbf{v} and \mathbf{w} are three vectors in 2-or 3-space, and let k is any scalar then:
a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}($ Commutative).
b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$ (Distributive property).
c) $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(k \mathbf{v})$ (Associative).
d) $\mathbf{v} . \mathbf{v}>0$ if $\mathbf{v} \neq 0$ and $\mathbf{v} . \mathbf{v}=0$ if $\mathbf{v}=0$.

Proof (a):
Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are tow vectors in 3-space then:

```
\(\mathbf{u} \cdot \mathbf{v}=\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)\)
    \(=\left(v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}\right)\) (commutative property of multiplication)
    \(=\mathbf{v} . \mathbf{u}\)
```

Proof (b):
Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, \mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ are three vectors in 3-space then:

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\left\langle u_{1}, u_{2}, u_{3}\right\rangle .\left\langle v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right\rangle \\
& =u_{1}\left(v_{1}+w_{1}\right)+u_{2}\left(v_{2}+w_{2}\right)+u_{3}\left(v_{3}+w_{3}\right) \\
& =u_{1} v_{1}+u_{1} w_{1}+u_{2} v_{2}+u_{2} w_{2}+u_{3} v_{3}+u_{3} w_{3} \\
& =\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)+\left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right) \\
& =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
\end{aligned}
$$

Proof (c):

$$
\begin{aligned}
k(\mathbf{u} \cdot \mathbf{v}) & =k\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\
& =\left(k u_{1}\right) v_{1}+\left(k u_{2}\right) v_{2}+\left(k u_{3}\right) v_{3} \\
& =(k \mathbf{u}) \cdot \mathbf{v}, \text { and similarly for } k(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(k \mathbf{v}) .(\text { Homework part }(\mathrm{d})) .
\end{aligned}
$$

Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Parallel vectors:

We previously said that the two nonzero vectors are parallel if they have the same direction and the angle between these parallel vectors is zero degree, and if the angle between them is 180° then they are parallel and point in the opposite direction.

1- Two nonzero vectors in 2-or 3-space are parallel if they are scalar multiples of one another.
If \mathbf{u} and \mathbf{v} are two nonzero vectors and $\mathbf{u}=k \mathbf{v}$ (k any scalar), then \mathbf{u} and \mathbf{v} are parallel.
For example: if $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then they are parallel if and only if:

$$
\mathbf{u}=k \mathbf{v}=k\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle k v_{1}, k v_{2}, k v_{3}\right\rangle .
$$

2- Two nonzero vectors are parallel if and only if $|\mathbf{u} \cdot \mathbf{v}|=\|\mathbf{u}\|\|\mathbf{v}\|$ and they have the same direction if and only if $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\|$.

That means they are parallel if $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\mp \mathbf{1} \quad\left(\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)$ and they have the same direction if $\cos \boldsymbol{\theta}=\mathbf{1}\left(\cos \theta=1 \rightarrow \theta=0\right.$, and $\left.\cos \theta=-1 \rightarrow \theta=180^{\circ}\right)$.

Example (29): Determine which of the following vectors are parallel to vector $\mathbf{v}=\langle-3,-2,5\rangle$.
a) $\mathbf{u}=\langle 6,4,-10\rangle$;
b) $\mathbf{w}=\left\langle\frac{-3}{2},-1, \frac{-5}{2}\right\rangle$;
c) $\mathbf{d}=\left\langle 2, \frac{4}{3}, \frac{-10}{3}\right\rangle$.

Solution:
a) If $\mathbf{v}=k \mathbf{u}$ then, they are parallel.
$\langle-3,-2,5\rangle=k<6,4,-10\rangle=\langle 6 k, 4 k,-10 k\rangle$
$-3=6 k \rightarrow k=-\frac{1}{2},-2=4 k \rightarrow k=-\frac{1}{2}, 5=-10 k \rightarrow k=-\frac{1}{2}$
$k \mathbf{u}=-\frac{1}{2}\langle 6,4,-10\rangle=\langle-3,-2,5\rangle=\mathbf{v}$, so the two vectors are parallel.
We will obtain the same result if we take $\mathbf{u}=k \mathbf{v}$, but $k=-2$. (check this).
b) If $\mathbf{v}=k \mathbf{w}$, then they are parallel.

$$
\begin{aligned}
& \langle-3,-2,5\rangle=k\left\langle\frac{-3}{2},-1, \frac{-5}{2}\right\rangle=\left\langle\frac{-3}{2} k,-1 k, \frac{-5}{2} k\right\rangle \\
& -3=\frac{-3}{2} k \rightarrow k=2,-2=-1 k \rightarrow k=2,5=\frac{-5}{2} k \rightarrow k=-2 .
\end{aligned}
$$

k is not equal in all three cases, so the two vectors are not parallel.

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Now, if we use the second method:

$$
\begin{aligned}
\|\mathbf{v}\| & =\sqrt{(-3)^{2}+(-2)^{2}+(5)^{2}}=\sqrt{38} ; \\
\|\mathbf{w}\| & =\sqrt{\left(\frac{-3}{2}\right)^{2}+(-1)^{2}+\left(\frac{-5}{2}\right)^{2}}=\frac{\sqrt{38}}{2} \rightarrow\|\mathbf{v}\|\|\mathbf{w}\|=19 ; \\
\mathbf{v} \cdot \mathbf{w} & =\left\langle-3,-2,5>\cdot\left\langle\frac{-3}{2},-1, \frac{-5}{2}\right\rangle\right. \\
& =\frac{9}{2}+2-\frac{25}{2} \\
& =-6
\end{aligned}
$$

$|\mathbf{v} \cdot \mathbf{w}| \neq\|\mathbf{v}\|\|\mathbf{w}\|$, so the two vectors are not parallel. (Homework part (c)).
Example (30): Find a vector \mathbf{v} of length 2 units which is parallel and in same direction to $\mathbf{u}=<2$, $-2,1>$.

Solution: (first method).
We use the formula of unit vector to find the components of the vector \mathbf{v}.
$\mathbf{U}=\frac{\mathbf{v}}{\|\mathbf{v}\|} \rightarrow \mathbf{v}=\mathbf{U}\|\mathbf{v}\|,\|\mathbf{v}\|=2$, we need to find \mathbf{U}.
\mathbf{v} is parallel to \mathbf{u} and with the same direction as \mathbf{u}, thus we find the unit vector from the vector u .

$$
\begin{aligned}
& \|\mathbf{u}\|=\sqrt{2^{2}+(-2)^{2}+1^{2}}=\sqrt{9}=3 \\
& \mathbf{U}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{\langle 2,-2,1\rangle}{3}=\left\langle\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right\rangle \\
& \mathbf{v}=\mathbf{U}\|\mathbf{v}\| \\
& =2\left\langle\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right\rangle=\left\langle\frac{4}{3}, \frac{-4}{3}, \frac{2}{3}\right\rangle \text { and we can check this by find }\|\mathbf{v}\|=2 .
\end{aligned}
$$

Second method: Two vectors are parallel if they are scalar multiples of one another.

$$
\begin{aligned}
& \mathbf{v}=k \mathbf{u}, \\
& = \\
& \begin{aligned}
\|\mathbf{v}\| & =\sqrt{(2 k)^{2}+(-2 k)^{2}+k^{2}} \\
& =\sqrt{9 k^{2}}
\end{aligned}
\end{aligned}
$$

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

$$
\begin{aligned}
& =3 k \rightarrow\|\mathbf{v}\|=3 \rightarrow 2=3 k \rightarrow k=\frac{2}{3} \\
& \text { So } \mathbf{v}=\left\langle\frac{4}{3}, \frac{-4}{3}, \frac{2}{3}\right\rangle .
\end{aligned}
$$

Example (31): find the components of the vector \mathbf{v}, that has the same direction as $\mathbf{u}=<3,4>$, and $\|\mathrm{v}\|=12$. (Homework).

Example (32): If $\|\mathbf{v}\|=10$, and $\mathbf{u}=8 \mathbf{i}+15 \mathbf{j}$, find the components of the vector \mathbf{v} if it has the same direction as u. (homework).

How to find the magnitude and direction of a given vector?
Example (33): Find the magnitude and direction angle of the vector $\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j}$.
Solution:

$$
\begin{aligned}
\|\mathbf{v}\| & =\sqrt{(-2)^{2}+5^{2}} \\
& =\sqrt{29} \text { the magnitude. }
\end{aligned}
$$

In (figure 29) we note that we must find the angle θ_{1} (from X-axis to the vector), so first we must find the angle θ_{2} (from $-X$-axis to the vector).

$$
\begin{aligned}
\tan \theta_{2}= & \frac{5}{-2} \rightarrow \theta_{2}=\tan ^{-1}\left(\frac{5}{-2}\right) \\
& \approx 68.2^{\circ} \\
\theta_{1} & =180^{\circ}-\theta_{2} \\
& =180^{\circ}-68.2^{\circ} \\
& =111.8^{\circ} \text { the angle. }
\end{aligned}
$$

Figure 29

Example (34): Find the components of the vector \mathbf{v} if $\|\mathbf{v}\|=10$ and $\theta=40^{\circ}$.

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Solution:
Let $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ as shown in (figure 30), we must find v_{1} and v_{2}.

$$
\begin{gathered}
\cos 40^{\circ}=v_{1} /\|\mathbf{v}\| \\
v_{1}=\|\mathbf{v}\| \cos 40^{\circ} \\
=10(0.766) \\
=7.66
\end{gathered}
$$

$$
\sin 40^{\circ}=v_{2} /\|\mathbf{v}\|
$$

$$
v_{2}=\|\mathbf{v}\| \sin 40^{\circ}
$$

$$
=10(0.642)
$$

Figure 30

$$
=6.427
$$

Thus $\mathbf{v}=<7.66,6.427>$ or $\mathbf{v}=7.66 \mathbf{i}+6.427 \mathbf{j}$ (as linear combination form).
Example (35): Find a vector \mathbf{v} in linear combination form if $\|\mathbf{v}\|=25$ and $\theta=146^{\circ}$. (Homework). (with drawing the figure).

Example (36): determine whether the two nonzero vectors $\mathbf{v}=-3 \mathbf{i}-4 \mathbf{j}$ and $\mathbf{u}=6 \mathbf{i}+8 \mathbf{j}$, are parallel and have the same direction. (Homework).

Example (37): Find the magnitude and direction of the vector $\mathbf{v}=3(\cos 30 \mathbf{i}+\sin 30 \mathbf{j})$. (Homework).

Example (38): Determine whether each pair of the following vectors are orthogonal, parallel or neither.

$$
\mathbf{u}=\langle 1,0,0,1\rangle, \mathbf{v}=\langle 0,1,1,0\rangle \text { and } \mathbf{w}=\langle 3,0,0,3\rangle
$$

Solution:
$\mathbf{u} . \mathbf{v}=0 \rightarrow \mathbf{u}$ and \mathbf{v} are orthogonal.
$\mathbf{v} \cdot \mathbf{w}=0 \rightarrow \mathbf{v}$ and \mathbf{w} are orthogonal.
$\mathbf{u} \cdot \mathbf{w}=6 \rightarrow \mathbf{u}$ and \mathbf{w} are not orthogonal.
Now we check whether the two vectors \mathbf{u} and \mathbf{w} are parallel.

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
$\mathbf{u} \cdot \mathbf{w}=6,\|\mathbf{u}\|=\sqrt{2},\|\boldsymbol{w}\|=\sqrt{18},\|\mathbf{u}\|\|\mathbf{w}\|=6$;
Since $\mathbf{u} \cdot \mathbf{w}=\|\mathbf{u}\|\|\mathbf{w}\| \rightarrow \mathbf{u}$ and \mathbf{w} are parallel and in the same direction.
Note: If $\mathbf{u} \cdot \mathbf{w}=-6$ then $|\mathbf{u} \cdot \mathbf{w}|=\|\mathbf{u}\|\|\mathbf{w}\|$ and the vectors \mathbf{u} and \mathbf{w} are parallel but not in the same direction.

Example (39): Determine whether each pair of the following vectors are orthogonal, parallel (in the same direction) or neither. ($\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{e} Homework).
a) $\mathbf{v}=\langle-5,3,7\rangle, \mathbf{u}=\langle 6,-8,2\rangle$;
b) $\mathbf{v}=\langle 4,6\rangle, \mathbf{u}=\langle-3,2\rangle$;
c) $\mathbf{v}=-\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}, \mathbf{u}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$;
d) $\mathbf{v}=2 \mathbf{i}+6 \mathbf{j}-4 \mathbf{k}, \mathbf{u}=-3 \mathbf{i}-9 \mathbf{j}+6 \mathbf{k}$;
e) $\mathbf{v}=-3 \mathbf{i}-4 \mathbf{j}, \mathbf{u}=6 \mathbf{i}+8 \mathbf{j}$.

Solution(d):

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{u} & =(2)(-3)+(6)(-9)+(-4)(6) \\
& =-84 \\
\|\mathbf{v}\| & =\sqrt{56},\|\mathbf{u}\|=\sqrt{126} \rightarrow\|\mathbf{v}\|\|\mathbf{u}\|=84
\end{aligned}
$$

Since $|\mathbf{v} . \mathbf{u}|=\|\mathbf{v}\|\|\mathbf{u}\| \rightarrow$ the vectors are parallel but are not in the same direction.

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts, 1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

