Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis.
2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Line and planes in 3-space:

In this section we shall use the vectors to derive equations of lines and planes in 3-spase.
We shall then use these equations to solve some basic geometric problems.

Planes in 3-space (Finding the equations of the plan):

We know that in analytic geometry a line in 2-space can be specified by giving its slope and one of its points. Similarly, we can specify a plane in 3 -space by giving its inclination(slope) specifying one of its points. Describe the inclination of a plane is to specify a nonzero vector, called normal, that is perpendicular to the plane.

If we want to find the equation of the plane passing through the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and having the nonzero vector $\mathbf{n}=\langle a, b, c\rangle$ as a normal as shown in the following figure (figure 49), we note that the plane consists precisely of those points $P=(x, y, z)$ for which the vector $\overrightarrow{P_{0} P}$ is orthogonal to \mathbf{n}, that is,

$$
\begin{equation*}
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0 \tag{1}
\end{equation*}
$$

Since $\overrightarrow{P_{0} P}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$, therefore the equation (1) can be written as,

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \quad \ldots(2)
$$

If we continue,

$$
\begin{gathered}
a x-a x_{0}+b y-b y_{0}+c z-c z z_{0}=0 \\
a x+b y+c z+\left(-a x_{0}-b y_{0}-c z z_{0}\right)=0\left(\text { let }-a x_{0}-b y_{0}-c z 0=d\right)
\end{gathered}
$$

Thus, we can rewrite (2) in this form,

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{3}
\end{equation*}
$$

Where a, b, c, and d are constants, and a, b, and c are not all zero.
We call this the point-normal form of the equation of a plane.

Plane with normal vector

lectures
Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (61): (Finding the point-normal equation of a plane).

Find the equation of the plane passing through the point $(3,-1,7)$ and perpendicular to the vector $\mathbf{n}=(4,2,-5)$.

Solution:
By the formula (2),

$$
\begin{gathered}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\
4(x-3)+2(y+1)-5(z-7)=0 \\
4 x-12+2 y+2-5 z+35=0 \\
4 x+2 y-5 z+25=0 \text { The equation of the plane. }
\end{gathered}
$$

Theorem (10): If a, b, c, and d are constants and a, b, and c are not all zero, then the graph of the equation

$$
a x+b y+c z+d=0
$$

is a plane having the vector $\mathbf{n}=\langle a, b, c\rangle$ as a normal.

Equation of a plane through three points:

Example (62): Find the equation of the plane passing through the three points $P_{1}=(1,2,-1)$, $P_{2}=(2,3,1)$, and $P_{3}=(3,-1,2)$.

Solution:
the equation is,

$$
a x+b y+c z+d=0
$$

Generally, we can solve this example without using the concepts of the vectors, as following below.

1) the first method:

Since the three points lie in the plane, then their coordinates must satisfy the general equation of the plane, therefore,

$$
\begin{gathered}
a+2 b-c+d=0 \\
2 a+3 b+c+d=0 \\
3 a-b+2 c+d=0
\end{gathered}
$$

Now we have homogeneous system of linear equations and we can find the solution of this system using Gauss-Jordan elimination method (reduced row echelon form).

Ministry of Higher Education
 \& Scientific Research
 University of Anbar
 College of Science
 Department of Applied
 Mathematics

lectures
Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim
$\underline{\text { note: }}$ This homogeneous system of linear equations with more unknowns than equations, therefore, it has infinitely many solutions.

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 2 & -1 & 1 & 0 \\
2 & 3 & 1 & 1 & 0 \\
3 & -1 & 2 & 1 & 0
\end{array}\right]-2 R_{1}+R_{2} \rightarrow R_{2} \text { and }-3 R_{1}+R_{3} \rightarrow R_{3}} \\
& \sim\left[\begin{array}{rrrrr}
1 & 2 & -1 & 1 & 0 \\
0 & -1 & 3 & -1 & 0 \\
0 & -7 & 5 & -2 & 0
\end{array}\right]-1 \mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \\
& \sim\left[\begin{array}{rrrrr}
1 & 2 & -1 & 1 & 0 \\
0 & 1 & -3 & 1 & 0 \\
0 & -7 & 5 & -2 & 0
\end{array}\right]-2 R_{2}+R_{1} \rightarrow R_{1} \text { and } 7 R_{2}+R_{3} \rightarrow R_{3} \\
& \sim\left[\begin{array}{cccrc}
1 & 0 & 5 & -1 & 0 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & -16 & 5 & 0
\end{array}\right]-\frac{1}{16} \mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \\
& \sim\left[\begin{array}{ccccc}
1 & 0 & 5 & -1 & 0 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -5 / 16 & 0
\end{array}\right] 3 R_{3}+R_{2} \rightarrow R_{2} \text { and }-5 R_{3}+R_{1} \rightarrow R_{1} \\
& \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 9 / 16 & 0 \\
0 & 1 & 0 & 1 / 16 & 0 \\
0 & 0 & 1 & -5 / 16 & 0
\end{array}\right]
\end{aligned}
$$

Thus,

$$
\begin{gathered}
a+0+0+\frac{9}{16} d=0 \rightarrow a=-\frac{9}{16} d \\
0+b+0+\frac{1}{16} d=0 \rightarrow b=-\frac{1}{16} d \\
0+0+c-\frac{5}{16} d=0 \rightarrow c=\frac{5}{16} d
\end{gathered}
$$

Now if $d=-16$, then $a=9, b=1$, and $c=-5$ (checking with any equation).
Therefore, the equation of the plane passing through the three points P_{1}, P_{2}, and P_{3} is

$$
a x+b y+c z+d=0
$$

$$
9 x+y-5 z-16=0 \text { (checking with any point). }
$$

Now we use the concepts of vectors to find the equation of the plane passing through three points.
2) The second method:
3)

Ministry of Higher Education
 \& Scientific Research
 University of Anbar
 College of Science
 Department of Applied
 Mathematics

lectures

Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Since the points lie in the plane, then the vectors $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{1} P_{3}}$ are parallel to the plane, where

$$
\begin{gathered}
\overrightarrow{P_{1} P_{2}}=P_{2}-P_{1}=\langle 2-1,3-2,1-(-1)\rangle=\langle 1,1,2\rangle ; \\
\overrightarrow{P_{1} P_{3}}=P_{3}-P_{1}=\langle 2,-3,3\rangle .
\end{gathered}
$$

Therefore, the cross product $\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}$ is normal to the plane because it perpendicular to both the vectors $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{1} P_{3}}$.

$$
\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{rrr}
\boldsymbol{i} & \mathbf{j} & \boldsymbol{k} \\
1 & 1 & 2 \\
2 & -3 & 3
\end{array}\right|=\langle 9,1 .-5\rangle \rightarrow a=9, b=1, \text { and } c=-5 .
$$

Since the points P_{1}, P_{2}, and P_{3} lie in the plane, therefore a point-normal form for the equation of a plane is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

We can take any point of these three pointe as point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$.
Thus, if we take $P_{1}=(1,2,-1)$, we obtain:

$$
\begin{gathered}
9(x-1)+(y-2)+-5(z+1)=0 \\
9 x-9+y-2-5 z-5=0 \\
9 x+y-5 z-16=0
\end{gathered}
$$

vector form of equation of a plane:

Vector notation provides a useful alternative way of writing the point-normal form of the equation of a plane.

Let $\mathbf{r}=\langle x, y, z\rangle$ be the vector from the origin point to the point $P=(x, y, z)$, let $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ the vector from the origin point to the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and let $\mathbf{n}=\langle a, b, c\rangle$ be a vector normal to the plane, then $\overrightarrow{P_{0} P}=\mathbf{r}-\mathbf{r}_{0}$ as shown in (figure 50).
since \mathbf{n} is perpendicular to $\overrightarrow{P_{0} P}$ then we can write the formula (1) $\mathbf{n} \cdot \overrightarrow{P_{0} P}=0$ as:

$$
\begin{equation*}
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0 \tag{4}
\end{equation*}
$$

This is called the vector form of the equation of a plane.

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Plane with normal vector

Example (63): Find the vector form of the equation of a plane that passes through the point (6, $3,-4)$ and perpendicular to the vector $\mathbf{n}=\langle-1,2,5\rangle$.

Solution:

$$
\begin{aligned}
& \langle-1,2,5\rangle .\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\
& \langle-1,2,5\rangle .\langle x-6, y-3, z+4\rangle=0 \\
& -1(x-6)+2(y-3)+5(z+4)=0 \\
& -x+6+2 y-6+5 z+20=0 \\
& -x+2 y+5 z+20=0
\end{aligned}
$$

Example (64): Use the concepts of the vectors to solve the following.
a) If we have the following figure (figure 51), then describe the vector $\boldsymbol{A D}$.

Figure 51

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis.
2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Solution:

$$
(\mathbf{v}+\mathbf{u})-2 \mathbf{v}=-\mathbf{v}+\mathbf{u}=\boldsymbol{A} D
$$

b) A, B, and C are midpoints of their respective lines (vectors), as shown in (figure 52), find the vector $\boldsymbol{O B}$.

Figure 52

Solution:

$$
\begin{aligned}
\overrightarrow{P Q} & =\overrightarrow{O Q}-\overrightarrow{O P} \text { or } \overrightarrow{P Q}=-\overrightarrow{O P}+\overrightarrow{O Q} \text { or } \overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q} \\
& =2 \mathbf{v}-2 \mathbf{u} \\
\overrightarrow{P B} & =\frac{1}{2} \overrightarrow{P Q}=\frac{1}{2}(2 \mathbf{v}-2 \mathbf{u})=\mathbf{v}-\mathbf{u} \\
\overrightarrow{O B} & =\overrightarrow{O P}+\overrightarrow{P B} \\
& =2 \mathbf{u}+(\mathbf{v}-\mathbf{u}) \\
& =2 \mathbf{u}+\mathbf{v}-\mathbf{u} \\
& =\mathbf{u}+\mathbf{v}, \text { as shown in figure } 53 .
\end{aligned}
$$

Figure 53

Ministry of Higher Education
 \& Scientific Research
 University of Anbar
 College of Science
 Department of Applied
 Mathematics

lectures

Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim
c) If M and N are midpoints of their respective lines (vectors) as shown in figure 54 , show that the vectors $\boldsymbol{M N}$ and $\boldsymbol{A B}$ are parallel. $(\boldsymbol{O A}=\mathbf{v}$ and $\boldsymbol{O B}=\mathbf{u})$.

Figure 54
Solution:

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{A O}+\overrightarrow{O B} \\
& =-\mathbf{v}+\mathbf{u} \\
\overrightarrow{M N} & =\overrightarrow{M O}+\overrightarrow{O N} \\
& =-\frac{1}{2} \mathbf{v}+\frac{1}{2} \mathbf{u} \\
& =\frac{1}{2}(-\mathbf{v}+\mathbf{u})=\frac{1}{2} \overrightarrow{A B}
\end{aligned}
$$

since the vector $\overrightarrow{M N}$ represents the scalar multiple of the vector $\overrightarrow{A B}$, then the vectors are parallel.

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts,1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

