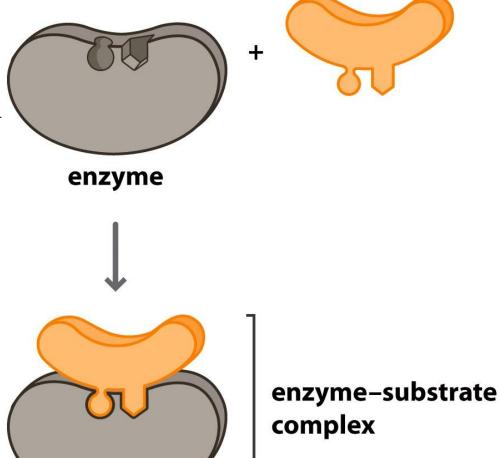

- Enzymes are proteins that act as catalysts for metabolic reactions, making the reaction go faster.
- Enzymes work by lowering the energy of activation.
- Each enzyme is specific for a reaction.

 Enzymes are found in all living organisms and most cells contain hundreds of types which are constantly being manufactured and replaced.


time

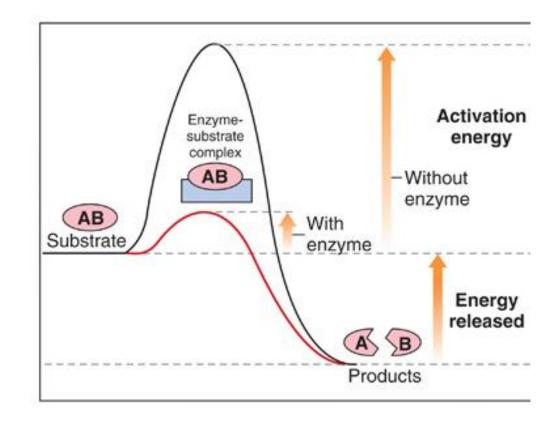
PROPERTIES OF ENZYMES

- Enzymes are generally highly specific.
 - Some enzymes work with only one substrate, others work with a group of molecules.
 - Succinic dehydrogenase oxidizes only succinic acid
 - A proteolytic enzyme always degrades proteins because it reacts only with peptide bonds.
- The shape and electrical charges found at the active site allow for the reaction to work and are responsible for the enzyme's specificity.

PROPERTIES OF ENZYMES

- Enzymes have specific three dimensional shapes: if the shape changes, activity is inhibited.
- The shape of the molecule provides a importante site called the active site. It is here that:
 - The substrate fits into the enzyme's active site.
 - The enzyme and substrate interact to form the enzymesubstrate complex.
- The active site has to have the proper shape for the enzyme to work.

substrate


Figure 3.3 Microbiology: A Clinical Approach (© Garland Science)

Enzymes

- Catalysts are chemical substances that speed up a reaction without affecting the products.
- Catalysts are not used up or changed in any way during the reaction.
- Enzymes are important catalysts in living organisms.

Enzymes

- Enzymes reduce the amount of activation energy required for a reaction to proceed.
 - Enzymes are not used up or altered.
 - Products are not altered.
 - Energy released is the same.

COENZYMES AND CO-FACTORS

- Enzymes may be pure proteins or proteins plus co-factors
- Co-factors are helper substances that are inorganic ions such as magnesium, zinc, or manganese.

 Coenzymes are helper substances that are non-protein organic molecules.

• Co-factors or coenzymes bind to the active site and change the shape of the active site so the substrate now fits.

COENZYMES AND CO-FACTORS

- Coenzymes and co-factors can also be used as carrier molecules.
 - When a carrier molecule receives either electrons or hydrogen atoms, it becomes reduced.
 - When a carrier molecule releases electrons or hydrogen atoms, it becomes oxidized.

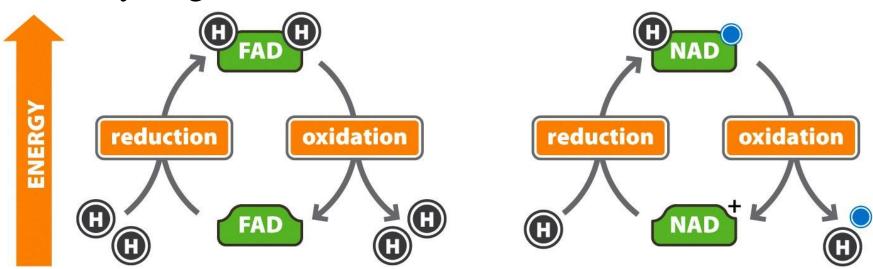


Figure 3.5 Microbiology: A Clinical Approach (© Garland Science)

COENZYMES AND CO-FACTORS

• Two coenzyme carrier molecules frequently encountered in biological reactions are:

− NAD⁺ = nicotinamide adenine dinucleotide

- FAD = flavin adenine dinucleotide.

ENZYME INHIBITION

- Enzyme inhibition takes place in three ways:
 - Competitive inhibition
 - Allosteric inhibition

Feedback inhibition

COMPETITIVE INHIBITION

- The inhibitor molecule is similar in structure to the substrate and competes with the substrate to bind to the active site.
- When the inhibitor has bound to the active site, the substrate cannot bind.
- •The binding dependent upon the relative numbers of inhibitor molecules and substrate molecules present.

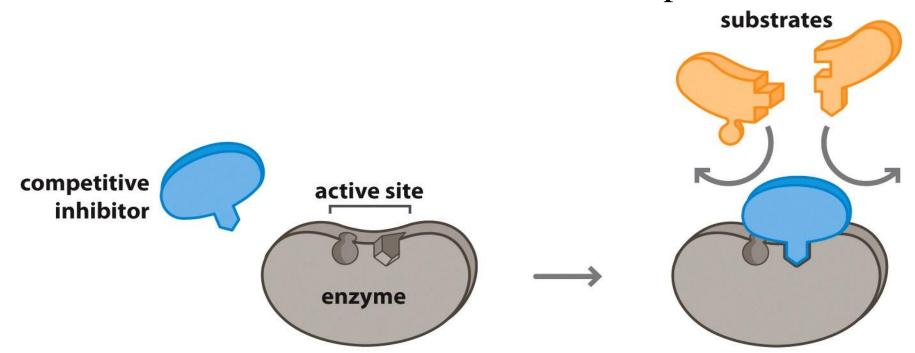


Figure 3.6 Microbiology: A Clinical Approach (© Garland Science)

ALLOSTERIC INHIBITION

- Inhibitor molecules bind to a part of the enzyme away from the active site: the allosteric site.
- This binding changes the shape of the active site in such a way that it can no longer fit properly with the substrate.

Figure 3.7 Microbiology: A Clinical Approach (© Garland Science)

FEEDBACK INHIBITION

- The final product in a pathway accumulates and begins to bind to and inactivate the enzyme
- when the level of end product decreases, the inhibition stops and the enzyme begins to function again.

Continue...

- Example: Inhibitors are often used as drugs, in many cases to prevent detrimental reactions in an organism. Aspirin, inhibits the enzymes that causes pain and inflammation.
- However, inhibitors can also be poisonous.
 Cyanide is a lethal toxin because it competitively inhibits cytochrome coxidase, an enzyme involved with cellular respiration.

FACTORS THAT AFFECT ENZYME REACTIONS

- Three major factors affect enzyme activity:
 - Temperature Can break hydrogen bonds and change shape
 - pH Can break hydrogen bonds and change shape
 - Concentration of substrate, product & enzyme –
 Lower numbers of substrate, product, and enzyme molecules means a lower level of activity.